publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. APL. SOFT. COMP.
    Adaptive Learning on Hierarchical Data Streams using Window-weighted Gaussian Probabilities
    Eduardo Tieppo, Julio Cesar Nievola, and Jean Paul Barddal
    Applied Soft Computing 2024
  2. SAC
    Just Change on Change: Adaptive Splitting Time for Decision Trees in Data Stream Classification
    Daniel Nowak Assis, Jean Paul Barddal, and Fabricio Enembreck
    In Proceedings of the Annual ACM Symposium on Applied Computing, SAC 2024 2024

2023

  1. STATS. & COMP.
    Random Forest Kernel for High-Dimension Low Sample Size Classification
    Lucca Portes Cavalheiro, Simon Bernard, Jean Paul Barddal, and Laurent Heutte
    Statistics and Computing 2023
  2. ICMLA
    Detecting Relevant Information in High-Volume Chat Logs: Keyphrase Extraction for Grooming and Drug Dealing Forensic Analysis
    Jeovane Honório Alves, Horácio A. C. G. Pedroso, Rafael Honorio Venetikides, Joel E. M. Koster, Luiz Rodrigo Grochocki, Cinthia Obladen Almendra Freitas, and Jean Paul Barddal
    In International Conference on Machine Learning with Applications (ICMLA) 2023
  3. ICMLA
    Event-driven Sentiment Drift Analysis in Text Streams: An Application in a Soccer Match
    Cristiano Mesquita Garcia, Alceu Souza Britto Jr., and Jean Paul Barddal
    In International Conference on Machine Learning with Applications (ICMLA) 2023
  4. NEUCOM
    Incremental Specialized and Specialized-Generalized Matrix Factorization Models based on Adaptive Learning Rate Optimizers
    Antônio David Viniski, Jean Paul Barddal, and Alceu Souza Britto Jr.
    Neurocomputing 2023
  5. ESWA
    An Explainable Machine Learning Approach for Student Dropout Prediction
    João Gabriel Corrêa Kruger, Alceu Souza Britto Jr., and Jean Paul Barddal
    Expert Systems with Applications 2023
  6. BRACIS
    A Tool for Measuring Energy Consumption in Data Stream Mining
    Eric Kenzo Taniguchi Onuki, Andreia Malucelli, and Jean Paul Barddal
    In Brazilian Conference on Intelligent System (BRACIS) 2023
  7. IJCNN
    Benchmarking Feature Extraction Techniques for Textual Data Stream Classification
    Bruno Siedekum Thuma, Pedro Silva Vargas, Cristiano Garcia, Alceu Souza Britto Jr., and Jean Paul Barddal
    In 2023 International Joint Conference on Neural Networks, IJCNN 2023, Gold Coast, Australia, 2023 2023
  8. IJCNN
    Mass-Based Short Term Selection of Classifiers in Data Streams
    Daniel Nowak Assis, Fabricio Enembreck, and Jean Paul Barddal
    In 2023 International Joint Conference on Neural Networks, IJCNN 2023, Gold Coast, Australia, 2023 2023
  9. INFUS
    Exploring diversity in data complexity and classifier decision spaces for pool generation
    Marcos Monteiro, Alceu S. Britto, Jean Paul Barddal, Luiz S. Oliveira, and Robert Sabourin
    Information Fusion 2023

2022

  1. ARXIV
    Evaluating k-NN in the Classification of Data Streams with Concept Drift
    Roberto Souto Maior Barros, Silas Garrido Teixeira de Carvalho Santos, and Jean Paul Barddal
    2022
  2. SMC
    Pattern Spotting and Image Retrieval in Historical Documents using Deep Hashing
    Caio Silva Dias, Alceu Souza Britto Jr., Jean Paul Barddal, Laurent Heutte, and Alessandro Lameiras Koerich
    In Proceedings of the IEEE Systems, Man, and Cybernetics Conference (IEEE SMC) 2022
  3. SMC
    Improving Data Stream Classification using Incremental Yeo-Johnson Power Transformation
    Eduardo Tieppo, Jean Paul Barddal, and Julio Cesar Nievola
    In Proceedings of the IEEE Systems, Man, and Cybernetics Conference (IEEE SMC) 2022
  4. ESANN
    A Machine Learning Approach for School Dropout Prediction in Brazil
    João Gabriel Corrêa Kruger, Jean Paul Barddal, and Alceu Souza Britto Jr.
    In Proceedings of the 30th European Symposium on Artificial Neural Networks (ESANN) 2022
  5. IJCNN
    Classifying Hierarchical Data Streams using Global Classifiers and Summarization Techniques
    Eduardo Tieppo, Jean Paul Barddal, and Julio Cesar Nievola
    In 2022 International Joint Conference on Neural Networks, IJCNN 2022, Padua, Italy, 2022 2022
  6. IJCNN
    Evaluation of Self-taught Learning-based Representations for Facial Emotion Recognition
    Bruna Delazeri, Leonardo Leon Veras, Jean Paul Barddal, Alessandro L. Koerich, and Alceu Souza Britto Jr.
    In 2022 International Joint Conference on Neural Networks, IJCNN 2022, Padua, Italy, 2022 2022
  7. IJCNN
    Assessing Batch and Online Learning for Delivery in Full and On Time Predictions
    Adriano Alves Lima, Márcio Venâncio Batista, Jean Paul Barddal, Danilo Sipoli Sanches, and Luiz Eduardo Soares Oliveira
    In 2022 International Joint Conference on Neural Networks, IJCNN 2022, Padua, Italy, 2022 2022
  8. ESWA
    A Systematic Review on Computer Vision-Based Parking Lot Management Applied on Public Datasets
    Paulo Ricardo Lisboa Almeida, Jeovane Honório Alves, Rafael Stubs Parpinelli, and Jean Paul Barddal
    Expert Systems with Applications 2022
  9. ICAART
    Univariate Time Series Prediction Using Data Stream Mining Algorithms and Temporal Dependence
    Marcos Alberto Mochinski, Jean Paul Barddal, and Fabricio Enembreck
    In Proceedings of International Conference on Agents and Artificial Intelligence, ICAART 2022 2022
  10. SAC
    Automatic Disease Vector Mosquitoes Identification via Hierarchical Data Stream Classification
    Eduardo Tieppo, Jean Paul Barddal, and Julio Cesar Nievola
    In Proceedings of the Annual ACM Symposium on Applied Computing, SAC 2022 2022
  11. ACM CSUR
    A Survey on Concept Drift in Process Mining
    Denise Maria Vecino Sato, Sheila Cristiana Freitas, Jean Paul Barddal, and Edson Emilio Scalabrin
    ACM Computing Surveys 2022

2021

  1. ICPM
    Interactive Process Drift Detection: a framework for visual analysis of process drifts
    Denise Maria Vecino Sato, Rafaela Mantovani Fontana, Jean Paul Barddal, and Edson Emilio Scalabrin
    In International Conference on Process Mining (ICPM) - Demo track 2021
  2. AIRE
    Hierarchical classification of data streams: a systematic literature review
    Eduardo Tieppo, Roger Robson Santos, Jean Paul Barddal, and Júlio Cesar Nievola
    Artificial Intelligence Review 2021
  3. BRACIS
    Classifying Potentially Unbounded Hierarchical Data Streams with Incremental Gaussian Naive Bayes
    Eduardo Tieppo, Julio Cesar Nievola, and Jean Paul Barddal
    In Brazilian Conference on Intelligent System (BRACIS) 2021
  4. SMC
    Adaptive Global k-Nearest Neighbors for Hierarchical Classification of Data Streams
    Eduardo Tieppo, Jean Paul Barddal, and Julio Cesar Nievola
    In IEEE Conference on Systems, Man, and Cybernetics (SMC) 2021
  5. IJCNN
    Dynamically Selected Ensemble for Data Stream Classification
    Lucca Portes Cavalheiro, Jean Paul Barddal, Alceu Souza Britto Jr., and Laurent Heutte
    In International Joint Conference on Neural Networks (IJCNN) 2021
  6. IJCNN
    Towards the Overcome of Performance Pitfalls in Data Stream Mining Tools
    Lucca Portes Cavalheiro, Marco Antonio Alves Zanata, and Jean Paul Barddal
    In International Joint Conference on Neural Networks (IJCNN) 2021
  7. ICAISC
    Interactive Process Drift Detection Framework
    Denise Maria Vecino Sato, Jean Paul Barddal, and Edson Emilio Scalabrin
    In International Conference on Artificial Intelligence and Soft Computing (ICAISC) 2021
  8. ESWA
    A case study of batch and incremental recommender systems in supermarket data under concept drifts and cold start
    Antônio David Viniski, Jean Paul Barddal, Alceu Souza Britto Jr., Fabricio Enembreck, and Humberto Vinicius Aparecido Campos
    Expert Systems with Applications 2021
  9. PAKDD
    UKIRF: An Item Rejection Framework for Improving Negative Items Sampling in One-Class Collaborative Filtering
    Antônio David Viniski, Jean Paul Barddal, and Alceu Souza Britto Jr.
    In Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2021
  10. ICPR
    Classifier Pool Generation based on a Two-level Diversity Approach
    Marcos Monteiro, Alceu Souza Britto Jr, Jean Paul Barddal, Luiz Soares Oliveira, and Robert Sabourin
    In International Conference on Pattern Recognition (ICPR) 2021

2020

  1. SMC
    Combining Slow and Fast Learning for Improved Credit Scoring
    Lucas Loezer Jean Paul Barddal, and Riccardo Lanzuolo
    In IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC) 2020
  2. SMC
    Naïve Approaches to Deal with Concept Drifts
    Alceu Souza Britto Jr Almeida, and Jean Paul Barddal
    In IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC) 2020
  3. SMC
    Improving Multiple Time Series Forecasting with Data Stream Mining Algorithms
    Jean Paul Barddal Marcos Alberto Mochinski, and Fabricio Enembreck
    In IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC) 2020
  4. SMC
    ADADRIFT: An Adaptive Learning Technique for Long-History Stream-Based Recommender Systems
    Fabricio Enembreck Eduardo Ferreira José, and Jean Paul Barddal
    In IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC) 2020
  5. ESWA
    Lessons learned from data stream classification applied to credit scoring
    Jean Paul Barddal, Lucas Loezer, Fabrício Enembreck, and Riccardo Lanzuolo
    Expert Systems with Applications 2020
  6. ANN. TELECOM.
    Regularized and incremental decision trees for data streams
    Jean Paul Barddal, and Fabricio Enembreck
    Annals of Telecommunications 2020
  7. IJCNN
    An End-to-End Approach for Recognition of Modern and Historical Handwritten Numeral Strings
    André Gustavo Hochuli, Alceu Souza Britto Jr., Jean Paul Barddal, Luiz Eduardo Soares Oliveira, and Robert Sabourin
    In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN) Glasgow, Scotland 2020
  8. SAC
    Cost-sensitive learning for imbalanced data streams
    Lucas Loezer, Fabricio Enembreck, Jean Paul Barddal, and Alceu Souza Britto Jr.
    In Proceedings of the 34rd Annual ACM Symposium on Applied Computing, SAC 2020, Brno, Czech Republic, March 30 - April 3, 2020 2020
  9. ANÁLISE PREDITIVA E DECISÕES JUDICIAIS: controvérsia ou realidade?
    Cinthia Obladen Almendra Freitas, and Jean Paul Barddal
    Revista Democracia Digital e Governo Eletrônico Jan 2020

2019

  1. ACM SIGKDD
    Machine learning for streaming data
    Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and João Gama
    ACM SIGKDD Explorations Newsletter Nov 2019
  2. SIGAPP ACR
    Addressing Feature Drift in Data Streams Using Iterative Subset Selection
    Lanqin Yuan, Bernhard Pfahringer, and Jean Paul Barddal
    SIGAPP Appl. Comput. Rev. Apr 2019
  3. IJCNN
    Vertical and Horizontal Partitioning in Data Stream Regression Ensembles
    Jean Paul Barddal
    In 2019 International Joint Conference on Neural Networks, IJCNN 2019, Budapest, Hungary, July 14-19, 2019 Apr 2019
  4. SAC
    Learning Regularized Hoeffding Trees from Data Streams
    Jean Paul Barddal, and Fabricio Enembreck
    In Proceedings of the 34rd Annual ACM Symposium on Applied Computing, SAC 2019, Limassol, Cyprus, April 08-12, 2019 Apr 2019
  5. SAC
    Decision tree-based Feature Ranking in Concept Drifting Data Streams
    Andreia Malucelli Jean Antonio Karax, and Jean Paul Barddal
    In Proceedings of the 34rd Annual ACM Symposium on Applied Computing, SAC 2019, Limassol, Cyprus, April 08-12, 2019 Apr 2019
  6. INFSYS
    Boosting decision stumps for dynamic feature selection on data streams
    Jean Paul Barddal, Fabrício Enembreck, Heitor Murilo Gomes, Albert Bifet, and Bernhard Pfahringer
    Information Systems Apr 2019
  7. ESWA
    Merit-guided dynamic feature selection filter for data streams
    Jean Paul Barddal, Fabrı́cio Enembreck, Heitor Murilo Gomes, Albert Bifet, and Bernhard Pfahringer
    Expert Syst. Appl. Apr 2019

2018

  1. ESANN
    Adaptive random forests for data stream regression
    Heitor Murilo Gomes, Jean Paul Barddal, Luis Eduardo Boiko Ferreira, and Albert Bifet
    In 26th European Symposium on Artificial Neural Networks, ESANN 2018, Bruges, Belgium, April 25-27, 2018 Apr 2018
  2. IJCNN
    An Experimental Perspective on Sampling Methods for Imbalanced Learning From Financial Databases
    Luis Eduardo Boiko Ferreira, Jean Paul Barddal, Fabrı́cio Enembreck, and Heitor Murilo Gomes
    In 2018 International Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13, 2018 Apr 2018
  3. INDIN
    Are fintechs really a hype? A machine learning-based polarity analysis of Brazilian posts on social media
    Marina Ponestke Seara, Andreia Malucelli, Altair Olivo Santin, and Jean Paul Barddal
    In 16th IEEE International Conference on Industrial Informatics, INDIN 2018, Porto, Portugal, July 18-20, 2018 Apr 2018
  4. SAC
    Iterative subset selection for feature drifting data streams
    Lanqin Yuan, Bernhard Pfahringer, and Jean Paul Barddal
    In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, April 09-13, 2018 Apr 2018

2017

  1. ACM CSUR
    A Survey on Ensemble Learning for Data Stream Classification
    Heitor Murilo Gomes, Jean Paul Barddal, Fabrı́cio Enembreck, and Albert Bifet
    ACM Comput. Surv. Apr 2017
  2. JSS
    A survey on feature drift adaptation: Definition, benchmark, challenges and future directions
    Jean Paul Barddal, Heitor Murilo Gomes, Fabrı́cio Enembreck, and Bernhard Pfahringer
    Journal of Systems and Software Apr 2017
  3. ML
    Adaptive random forests for evolving data stream classification
    Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrı́cio Enembreck, Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem
    Machine Learning Apr 2017
  4. ICTAI
    Improving Credit Risk Prediction in Online Peer-to-Peer (P2P) Lending Using Imbalanced Learning Techniques
    Luis Eduardo Boiko Ferreira, Jean Paul Barddal, Heitor Murilo Gomes, and Fabrı́cio Enembreck
    In 29th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2017, Boston, MA, USA, November 6-8, 2017 Apr 2017

2016

  1. INFSYS
    SNCStream+: Extending a high quality true anytime data stream clustering algorithm
    Jean Paul Barddal, Heitor Murilo Gomes, Fabrı́cio Enembreck, and Jean-Paul A. Barthès
    Inf. Syst. Apr 2016
  2. ICPR
    A benchmark of classifiers on feature drifting data streams
    Jean Paul Barddal, Heitor Murilo Gomes, Alceu Souza Britto Jr., and Fabrı́cio Enembreck
    In 23rd International Conference on Pattern Recognition, ICPR 2016, Cancún, Mexico, December 4-8, 2016 Apr 2016
  3. ICPR
    Overcoming feature drifts via dynamic feature weighted k-nearest neighbor learning
    Jean Paul Barddal, Heitor Murilo Gomes, Jones Granatyr, Alceu Souza Britto Jr., and Fabrı́cio Enembreck
    In 23rd International Conference on Pattern Recognition, ICPR 2016, Cancún, Mexico, December 4-8, 2016 Apr 2016
  4. IJCNN
    Towards emotion-based reputation guessing learning agents
    Jones Granatyr, Jean Paul Barddal, Adriano Weihmayer Almeida, Fabrı́cio Enembreck, and Adaiane Pereira Santos Granatyr
    In 2016 International Joint Conference on Neural Networks, IJCNN 2016, Vancouver, BC, Canada, July 24-29, 2016 Apr 2016
  5. ECML PKDD
    On Dynamic Feature Weighting for Feature Drifting Data Streams
    Jean Paul Barddal, Heitor Murilo Gomes, Fabrı́cio Enembreck, Bernhard Pfahringer, and Albert Bifet
    In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II Apr 2016

2015

  1. IJNCR
    Advances on Concept Drift Detection in Regression Tasks Using Social Networks Theory
    Jean Paul Barddal, Heitor Murilo Gomes, and Fabrı́cio Enembreck
    IJNCR Apr 2015
  2. ICEIS
    Applying Ensemble-based Online Learning Techniques on Crime Forecasting
    Anderson José Souza, André Pinz Borges, Heitor Murilo Gomes, Jean Paul Barddal, and Fabrı́cio Enembreck
    In ICEIS 2015 - Proceedings of the 17th International Conference on Enterprise Information Systems, Volume 1, Barcelona, Spain, 27-30 April, 2015 Apr 2015
  3. ICONIP
    Analyzing the Impact of Feature Drifts in Streaming Learning
    Jean Paul Barddal, Heitor Murilo Gomes, and Fabrı́cio Enembreck
    In Neural Information Processing - 22nd International Conference, ICONIP 2015, Istanbul, Turkey, November 9-12, 2015, Proceedings, Part I Apr 2015
  4. ICONIP
    On the Discovery of Time Distance Constrained Temporal Association Rules
    Heitor Murilo Gomes, Deborah Ribeiro Carvalho, Lourdes Zubieta, Jean Paul Barddal, and Andreia Malucelli
    In Neural Information Processing - 22nd International Conference, ICONIP 2015, Istanbul, Turkey, November 9-12, 2015, Proceedings, Part II Apr 2015
  5. ICONIP
    A Complex Network-Based Anytime Data Stream Clustering Algorithm
    Jean Paul Barddal, Heitor Murilo Gomes, and Fabrı́cio Enembreck
    In Neural Information Processing - 22nd International Conference, ICONIP 2015, Istanbul, Turkey, November 9-12, 2015, Proceedings, Part I Apr 2015
  6. ICTAI
    A Survey on Feature Drift Adaptation
    Jean Paul Barddal, Heitor Murilo Gomes, and Fabrı́cio Enembreck
    In 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy, November 9-11, 2015 Apr 2015
  7. SAC
    SNCStream: a social network-based data stream clustering algorithm
    Jean Paul Barddal, Heitor Murilo Gomes, and Fabrı́cio Enembreck
    In Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, April 13-17, 2015 Apr 2015
  8. SAC
    Pairwise combination of classifiers for ensemble learning on data streams
    Heitor Murilo Gomes, Jean Paul Barddal, and Fabrı́cio Enembreck
    In Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, April 13-17, 2015 Apr 2015