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Abstract20

This work introduces the representation ensemble learning algorithm, a novel21

approach for generating diverse unsupervised representations rooted in the prin-22

ciples of self-taught learning. The ensemble comprises convolutional autoencoders23

(CAEs) learned in an unsupervised manner, fostering diversity via a loss function24

designed to penalize similar CAEs’ latent representations. We employ support25

vector machines, bagging, and random forest as primary classification methods26

for the final classification step. Additionally, we incorporate KnoraU, a well-27

established technique used to dynamically select competent classifiers based on a28

test sample. We evaluate various fusion strategies, including sum, product, and29

stacking, to comprehensively assess the ensemble’s performance. A robust experi-30

mental protocol considering the facial expression recognition problem shows that31
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the proposed approach based on self-taught learning surpasses the accuracy of32

fine-tuned convolutional neural network (CNN) models. In terms of accuracy,33

the proposed method is up to 9.9 and 6.3 percentage points better than the34

CNN-based models fine-tuned for JAFFE and CK+ datasets, respectively.35

Keywords: Self-taught Learning, Facial Expression Recognition, Convolutional36

Neural Network, Autoencoder37

1 Introduction38

The study of facial expression recognition (FER) has been ongoing for over two39

decades, as it conveys emotional states during human communication that play an40

essential role in society. Moreover, recognizing emotions has several applications, some41

of them with substantial social impact, such as identifying the autism spectrum [1] and42

chronic depression disorders [2], or monitoring driver fatigue in safety car systems [3].43

The main challenges on the FER task are related to the different environmen-44

tal conditions like lighting variations, non-frontal image acquisition, low-intensity face45

expression, and differences in facial expressions among gender, culture, and age groups46

[4]. Additionally, the scarcity of training data concerning its quantity and quality47

(samples of facial emotions) for some specific FER applications makes a full supervised-48

based approach bothersome [5]. In other words, a significant limitation of purely49

supervised systems is their dependence on large volumes of labeled data. Labeling is,50

in some FER applications, a costly and time-consuming process. The deep learning-51

based methods disseminated with convolutional neural network (CNN) models have52

made such a limitation even more evident [6].53

An up-and-coming alternative to mitigate the problem related to the lack of labeled54

data is transfer learning (TL). A particular case of TL, named self-taught learning55

(STL) [7], consists of learning a representation (feature extractor) from unlabeled data,56

which is later applied to a target domain that is potentially from a different distri-57

bution. The main idea behind STL relies on natural human learning where unlabeled58

data is considered an essential foundation for high-level learning, being responsible for59

providing a more significant discriminating power [7]. Even with enough labeled data,60

STL can enhance the learning process, as observed in the experiments conducted in61

[8].62

The combination of extraction and classification techniques is essential for FER63

systems. The main challenges in efficient facial expression recognition are the selection64

of efficient feature extraction and classification techniques. Handcrafted features, such65

as local binary patterns (LBP) [9, 10], scale-invariant feature transforms (SIFT) [11],66

gray level co-occurrence matrix (GLCM) [12], sped up robust features (SURF) [13]67

and histograms of oriented gradient (HOG) [14] achieved a breakthrough in various68

fields. Although using different descriptors to extract handcrafted features is possible,69

it is currently common to choose to learn the representation, removing the task of70

defining the features from the developer.71
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The potential of deep learning approaches to generate highly effective data repre-72

sentations has been widely recognized. In FER research, solutions based on CNNs have73

gained prominence [15]. Similarly, the convolutional autoencoder (CAE) is a promising74

strategy to make unsupervised-based solutions [16, 17] possible. In our previous study75

[18], we noticed that unsupervised learned representations yielded an effective facial76

emotion recognition method. Built upon such prior work, we introduce in this paper77

a new representation learning ensemble (REL) algorithm to produce a pool of repre-78

sentations employing STL principles. The main idea behind REL is to explore various79

strategies to learn representations (feature extractors) unsupervised and consider a80

custom loss function designed to promote diversity. Moreover, in the context of the81

FER problem, we evaluate how competitive the REL results are compared to CNN-82

based architectures trained in a supervised approach. We also compare our method83

with the current state-of-the-art in a common experimental protocol.84

Two research questions guide this paper. The first, referred to as RQ1, concerns85

generating a diverse pool of unsupervised representations: “Does using a pool of86

unsupervised representations generated by the REL algorithm contribute to the per-87

formance of FER solutions?” However, we believe that more important than providing88

a new STL-based method to generate a pool of complementary representations is89

showing how far its performance is from that of supervised-based solutions. Thus,90

our second research question (RQ2) is “How does the new REL algorithm com-91

pare to supervised CNN-based architectures regarding facial expression recognition92

performance?”93

By answering these research questions, the present manuscript provides a two-94

fold contribution. The first contribution is a new algorithm to generate unsupervised95

representations using STL focusing on diversity. More specifically, CAEs are trained96

considering different diversity induction strategies, i.e., distinct model initialization,97

architectures, and training data. The rationale is to investigate if complementary unsu-98

pervised learned representations can contribute to the performance of a FER solution.99

The second contribution is a robust performance comparison between the proposed100

unsupervised FER solution and supervised strategies under the same conditions, i.e.,101

the same experimental protocol, and considering an authentic and demanding task102

like FER.103

A robust experimental protocol considering three auxiliary datasets (Kyoto, LFW,104

and LabelMe) necessary for the unsupervised generation of representations proposed105

here and two well-known FER datasets (Jaffe and CK+) has shown that the proposed106

method may surpass the accuracy of CNN-based solutions, including two fine-tuning107

strategies applied to ten different CNN architectures and the training of two CNNs108

from scratch. Furthermore, the proposed FER framework demonstrated superiority109

over several studies recently published in high-impact journals, covering both deep110

learning approaches and handcrafted frameworks and following the leave-one-subject-111

out (LOSO) cross-validation protocol.112

This paper is organized as follows. Section 2 introduces related works. Section113

3 describes the proposed algorithm for learning a pool of diverse representations,114

while Section 4 presents the experiments undertaken to answer our research questions.115

Finally, Section 5 draws our conclusions and directions for future work.116
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2 Related Works117

Various techniques have been proposed as FER solutions in the last few decades.118

Ensemble learning has become widely utilized in emotion recognition owing to its119

superior accuracy and generalization. Exploring diversity to create ensembles of CNNs,120

Renda et al. [19] investigated different strategies for inducing diversity in an ensemble121

of CNNs applied to FER. The results on the FER2013 dataset showed that seed122

variation yielded the best recognition results, while variations on the pre-training123

process of their CNNs achieved the best run-time performance.124

A novel method for FER using an ensemble of CNNs with probability-based fusion125

was proposed by Wen et al. [20]. The ensemble is constructed by randomly varying126

parameters and architecture around the optimal values for CNN. Each CNN is trained127

to output a probability for each class, which is then fused using probability-based128

fusion. Experiments were conducted using 100 CNNs, and the best average results129

were achieved when the ensemble size was 35 for all datasets. The method was tested130

on benchmark datasets, achieved 50.70% and 76.05% for JAFFE and CK+ datasets,131

respectively, and outperformed other compared methods in terms of accuracy.132

An ensemble learning method using electroencephalogram (EEG) signals is pro-133

posed by Li et al. [21]. The method uses a sliding time window to extract features and134

L1 regularization to select effective features. It then applies a model selection method135

to choose the best basic analysis sub-models and an ensemble operator to convert136

classification results. The optimal parameters are determined using multiple objective137

particle swarm optimization. The method is evaluated on two public datasets (DEAP138

and SEED) using the LOSO experimental protocol. The average accuracy rates for139

arousal and valence are 65.70% and 64.22%, respectively, on the DEAP dataset, and140

the average accuracy on the SEED dataset is 84.44%.141

TL has gained popularity and emerged as a promising area in machine learning due142

to its broad potential applications and has been extensively applied to computer vision143

tasks. Dhankhar et al. [22] introduced ResNet50 and VGG16 architectures for facial144

emotion recognition and proposed an ensemble that combines both CNN models. The145

ensemble model outperformed the baseline SVM as well as the individual ResNet50146

and VGG16 networks, achieving the highest accuracy of 75.8%. The SVM had an147

accuracy of 37.9%, while ResNet50 and VGG16 had accuracy rates of 73.8% and148

71.4%, respectively. The authors also explored TL for FER using pre-trained AlexNet,149

VGG, and ResNet architecture networks. They achieved an average accuracy of 90%150

on the combined JAFFE and CK+ datasets.151

Chowdary et al. [23] discuss using TL techniques in the FER scenario. Pre-trained152

networks such as ResNet50, VGG19, Inception V3, and MobileNet are employed. The153

fully connected layers of these pre-trained CNNs are removed and replaced with their154

own fully connected layers suitable to the specific task requirements. These newly155

added layers are then trained to update the weights. The experiment was performed156

using the CK+ dataset, resulting in an average accuracy of 96%.157

A novel pipeline strategy that gradually improves the accuracy of FER by first158

training the dense layer(s) and then tuning each pre-trained CNN block successively159

was proposed by Akhand et al. [24]. The proposed FER system is tested on eight160

pre-trained CNN models using the KDEF and JAFFE facial image datasets. FER is161
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challenging even for frontal views and is further complicated by the diversity of pro-162

file views in the KDEF dataset. The proposed method achieved remarkable accuracy163

on both datasets with pre-trained models, achieving a FER accuracy of 96.51% and164

99.52% on KDEF and JAFFE datasets, respectively, on a 10-fold cross-validation way.165

Proposed by Raina et al. [7], the STL framework is a particular case of TL that uses166

unlabeled data from distributions other than of the problem at hand to learn a high-167

level representation in an unsupervised manner. This approach is motivated by the168

lack of training instances in many applications, and authors argue that a robust rep-169

resentation can be obtained from unlabeled samples, such as low-level discriminating170

structures in natural images, such as corners, curves, and shapes [25]. As a conse-171

quence, several authors have employed STL in diverse classification tasks, including172

audio [26], text [27, 28], image [29–31] and sensor data [32].173

Inspired by STL to mitigate the problem related to the lack of samples for training174

in some FER applications and the use of ensembles to provide a way to generate a175

pool of diverse representations, we present our proposed algorithm algorithm in the176

next section.177

3 Proposed Approach178

The novelty in the proposed approach to solving the FER problem is an algorithm179

to generate a pool of representations inspired by STL and diversity concepts. Our180

approach is called representation ensemble learning (REL). REL has two essential181

features to promote diversity: i) it explores different strategies to generate diverse CAE182

architectures; ii) it uses a custom loss function to train different CAEs and promote183

diversity amongst latent representations.184

Fig. 1 presents a general overview of the complete STL strategy adopted in this185

paper. In the unsupervised representation learning step (Step 1), a high-level186

representation is learned using unlabeled data. This is the part in which our proposal187

is novel. Next, in the feature building step (Step 2), feature vectors are extracted188

from the labeled data of the target domain using the representation learned in the189

previous step. Finally, in the supervised learning step (Step 3), the feature vec-190

tors extracted in Step 2 are used to train a FER classification model (either using191

monolithic or ensemble-based classifiers).192

3.1 Strategies Explored to Generate Diversity193

We observe in the literature robust evidence that greater diversity is highly correlated194

with the increase in supervised CNN-based ensemble accuracy [19, 33]. Consequently,195

we follow the rationale of inducing diversity when creating the pool of unsupervised196

representations as illustrated in Fig. 2. The proposed algorithm uses a CAE to auto-197

matically learn meaningful representations from raw data, eliminating the need for198

manual feature engineering. The different strategies to vary specific CAE parameters199

are as follows:200

• Random Seed (S): here, different representations are generated by varying the201

distribution of weights during the CAE initialization process. The architecture may202
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Fig. 1 STL steps: (1) Unsupervised representation learning; (2) Feature building; (3) Supervised
learning.

be the same from one CAE to another, but the seed of the initialization process203

differs. The input is the number of representations (R) generated with different204

seeds. The algorithm randomly selects a seed at each generated CAE in the [0, 1000]205

interval.206

• CAE Architecture (A): here, we explore representation generation using differ-207

ent CAE architectures. One must define the network depth (number of layers, D),208

the filters used, and the dimensionality (I) of the intermediate (latent) layer. The209

generator will create the first architecture with a depth equal to the number of210

defined layers (D), then the second will have (D − 1) up to the last architecture211

with depth D = 1, which has one input, one intermediate, and one output layer212

(basic structure of a CAE). The representations generated here differ in depth on213

the CAE architectures but use the same number of neurons (I) in the latent layer.214

• Latent Representation (L): in this strategy, diversity is induced by varying the215

number of neurons in the middle layer of the CAE, named the latent layer. The216
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Fig. 2 Automatic unsupervised strategy generator for problem representation. (a) Different gen-
erating strategies of representations. (b) CAE for learning high-level representations. (c) Generated
representations based on strategies: seeds (S), CAE architecture (A), latent representation (L), seeds
+ CAE architecture (SA), seeds + latent representation (SL), latent representation + CAE architec-
ture (LA), and seeds + latent representation + CAE architecture (SLA).

input is the number of representations (R) to be generated with different dimen-217

sionality for the latent layer. The algorithm randomly selects a dimensionality from218

the [150, 2500] range at each iteration.219

The aforementioned strategies to generate diversity can also be combined as220

follows:221

• SA: it combines the strategy based on seeds (S) and CAE architecture (A). The222

representations generated by this combination have variations in CAE initialization223

and architecture (number of layers).224

• SL: it explores the combination of seeds (S) and latent representation (L) strategies,225

where the variation of both CAE initialization and latent layer dimensionality are226

adopted for each representation generated.227

• LA: it explores the use of latent representation (L) and CAE architecture (A).228

Here, we use two approaches directly related to the CAE architecture, varying229

the dimensionality of the latent layer and the CAE depth in each representation230

generated.231

• SLA: in the last combination, we consider all the strategies seeds (S), latent232

representation (L), and CAE architecture (A) for each representation generated.233
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3.2 Custom Loss Function234

The loss function used in the REL algorithm contains two terms: a general loss term235

and a penalty term. The first term is the mean squared error (MSE) denoted in236

Equation 1:237

LMSE =
1

P

P∑
i=1

(Xi − X̂i)
2 (1)

where Xi is the original input data, X̂i is the output data reconstructed by the CAE,238

and P is the total number of instances according to the batch size used to train the239

CAE.240

The MSE calculates the average of the squares of the discrepancies between the241

model’s predictions (X̂i) and the actual values (Xi) for a dataset composed of P242

examples. Its primary purpose is to minimize this value, aiming to make the outputs243

(X̂i) as similar as possible to the original inputs (Xi). This reflects the central goal244

of the CAE in learning a more concise and informative representation of the inputs,245

where a smaller value indicates a more precise reconstruction of the inputs.246

However, the MSE term alone cannot guarantee diversity between the generated247

representations inside the ensemble. Consequently, a custom penalty term is added to248

the loss function after generating the first representation to ensure diversity between249

representations. Since we want to maximize the difference between the latent represen-250

tations of different CAEs, the penalty term is added to the loss function as a negative251

term. Equation 2 represents the proposed custom loss function:252

LMSEP
=

1

P

p∑
i=1

(Xi − X̂i)
2 − β 1

T

T∑
k=1

(Rlast
k −Rcurr

k )2 (2)

where β defines the penalty provided to the similarity between the output of the253

Rlast
k and Rcurr

k , i.e., the latent vectors generated by the current and previous CAE,254

which is averaged across a validation set comprised of T instances. The dimensionality255

of the latent vectors Rlast
k and Rcurr

k may differ due to the differences in the CAE256

architectures, accordingly with the strategy used to generate diversity in the pool.257

This is the case when varying the dimensionality of the latent representation is the258

used strategy. Thus, we applied the principal component analysis (PCA) to make both259

latent vectors have the same dimensionality to allow computing the penalty term in260

Equation 2. For this purpose, we consider the size of the smallest latent vector as the261

number of selected PCA components.262

The greater the similarity between the latent vectors, the greater the penalty263

applied. The idea is to increase the diversity between the latent representations of a264

previous and a current CAE at each iteration. The need to adjust the β parameter265

emerges from the search for a crucial trade-off between the representations generated266

and the desired diversity. The sweet spot is where the quality of the representations267

produced is maximized while encouraging the desired diversity.268
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3.3 Representation Ensemble Learning (REL) Method269

This section introduces the proposed REL method, which is described here by three270

algorithms. Algorithm 1 presents the primary function responsible for generating a271

pool of unsupervised representations. The input parameters of the REL function play272

a pivotal role in configuring and executing the proposed method. In particular, we273

have ψ representing the number of representations to be generated, str defining the274

strategy to create the pool (S, L, A, SL, SA, LA, or SLA), Xu
t as the auxiliary275

unsupervised training dataset, Xu
v as the additional unsupervised validation dataset,276

both used for training the created autoencoders. The parameter β is related to the277

proposed custom loss function, defined in Equation 2 and used in Algorithm 2. It278

is a constant value that directly influences the magnitude and direction of the loss279

term in our function with the idea of penalizing the generation of similar CAEs.280

Finally, the structure params contains the configuration parameters for a default CAE281

architecture, including the number of layers, filter sizes, activation functions, and other282

fundamental hyperparameters. The default CAE is used if params is NULL.283

Fig. 3 Default CAE Architecture.

Fig. 3 shows the default CAE architecture used. It has input and output layers of284

dimensionality 96×96×1, a depth of 5, and a latent vector size equal to 500. However,285

depending on the strategy used to generate the pool, the latent vector dimension and286

the CAE depth may change at each iteration of the REL function, according to lines287

9-13 and 14-20 of the Algorithm 1, respectively. All the parameter values of the default288

CAE are shown in Table 1. Such parameters were defined empirically based on prelim-289

inary experiments and iterative adjustments performed throughout the development290

of the proposed model. We have experimentally defined these CAE parameter values291

with FER performance in mind. It is worth noticing that the CAE can be customized292

to suit specific application requirements. Finally, the output parameter ϱ is a pool of293

feature extractors trained on an unsupervised approach.294

At each iteration of the Algorithm 1, we create an encoder, a latent vector, and a295

decoder to compose a new CAE (see lines 21-28), which is compiled at line 29 consid-296

ering the provided Optimizer and Custom Loss parameters. Following that, on lines297

30-34, the created CAE is trained. As one can see in line 33, from the second itera-298

tion, the output prediction (Rlast
k ) of the previous CAE estimated on the validation299

dataset (Xu
v ) at line 35 is available to compute the customized loss function correctly.300

In line 36, we append the encoder in the pool as a new member, a feature extractor.301
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Algorithm 1 Representation Ensemble Learning (REL)

Input: ψ, as the number of representations,
Xu

t , as the auxiliary train dataset,
Xu

v , as the auxiliary validation dataset,
params, as the default CAE parameters (Table 1),
β, as a constant for loss penalization term,
str, as the strategy to vary CAE parameters

Output: ϱ, as the pool of diverse representations

1: function REL(ψ, str, Xu
t , X

u
v , β, params)

2: max depth ← params.CAE Depth

3: latent size ← params.Latent Size

4: seed number ← params.Seed

5: for k in [1..ψ] do
6: if (str in [S, SL, SA, SLA]) then
7: seed number ← random(range(0 : params.Max random seed))
8: end if
9: if str in [L, SL, LA, SLA] then

10: ini← params.Min latent size

11: end← params.Max latent size

12: latent size ← random(range(ini : end))
13: end if
14: if (str in [A, SA, LA, SLA]) then
15: if (max depth= 1) then
16: max depth ← params.CAE Depth

17: end if
18: else
19: max depth ← max depth −1
20: end if
21: for i in [1..max depth] do
22: encoder.create convolutional layer(params)

23: end for
24: encoder.create flatten layer(params)

25: for i in [1..max depth] do
26: decoder.create transpose layer(params)

27: end for
28: CAE.(encoder,decoder) ▷ CAE model constructor
29: CAE.compile(params.Optimizer, params.Custom Loss)

30: if k = 1 then
31: CAE.fit(params.Epoch, params.Batch Size, Xu

t , X
u
v , null)

32: else
33: CAE.fit(params.Epoch, params.Batch Size, Xu

t , X
u
v , R

last
k )

34: end if
35: Rlast

k ← CAE.encoder.predict(Xu
v ) ▷ Prediction on validation set

36: ϱ.append(CAE.encoder)
37: delete CAE

38: end for
39: return ϱ
40: end function 10



Table 1 Default parameter values for the CAE
model.

Parameter Value(s)
Stride 2
Activation RELU
Kernel Size 3
Filters [16, 32, 64, 128]
Output Activation Linear
Input Size Data [96, 96, 1]
Latent Size 500
Seed 42
CAE Depth 5
Custom Loss Custom Loss (Equation 2)
Optimizer SGD
Epoch 20
Batch Size 60
Padding Same
Max random seed 10000
Min latent size 150
Max latent size 2500

We detail the Custom Loss function in the Algorithm 2. As one can see in line 2 of302

this algorithm, in the first iteration, REL uses a regular loss denoted on the Equation303

1. However, for the second representation and so on, the cost function used is the304

customized one, indicated in Equation 2. When training a new representation, we try305

to diversify regarding the one created in the last REL iteration.306

In line 5 of Algorithm 2, the encoder corresponding to the current representation307

extracts the features from the validation set Xu
v . This is done using the predict func-308

tion, and the result obtained is stored in Rcurr
k . If we opt for the latent vector strategy309

to introduce diversity in the representations, it is essential to highlight that the dimen-310

sionality of the intermediate layer will vary between them. Therefore, for us to correctly311

calculate the difference between Rcurr
k and Rlast

k , it is essential to equalize their dimen-312

sions. Thus, in line 6, the smallest value between these dimensions is obtained and used313

as the number of components to be considered in the PCA, as indicated in lines 7 and314

8. This process of equalizing the dimensions is crucial for guaranteeing the consistency315

and comparability of representations throughout the algorithm.316

In line 9 of Algorithm 2, we calculate the sum of the quadratic differences between317

the last generated and current representations. The result of this calculation is then318

used, on line 10, as part of the penalty term, multiplying the value of β. This process319

is essential to adjust the impact of the penalty on the cost function and ensure that320

the difference between representations is considered according to the regularization321

parameter β. Such a regularization parameter reflects our concern about generating322

similar representations.323

After completing the training of all representations as outlined in the Algorithm324

1, we move on to the next step, called “Feature Building” (Step 2 of Fig. 1), which325

extracts feature vectors from the labeled data X l using the weights of each previously326

trained CAE.encoder available at the pool ϱ. We detail this process in the Algorithm327

3, which has the labeled target dataset X l and the pool of feature extractors ϱ as328
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Algorithm 2 Custom Loss Function - Eq. 2

Input: β, as the constant value for the loss function,
Xu

t , as the auxiliary train dataset,
Xu

v , as the auxiliary validation dataset,
Rlast

k , as the output of the latent layer of the last CAE,
Xi, as the true pattern,
X̂i, as the output pattern

Output: loss value, as the computed loss value

1: function Custom Loss(β , Xu
t , X

u
v , R

last
k )

2: if (Rlast
k = NULL) then

3: loss value ← 1
P

∑P
i=1 (Xi − X̂i)

2 (Equation 1)
4: else
5: Rcurr

k ← CAE.encoder.predict(Xu
v )

6: n components← min(length(Rlast
k ), length(Rcurr

k ))
7: PCA curr← PCA(n components).fit transform(Rlast

k )
8: PCA last← PCA(n components).fit transform(Rcurr

k )

9: dif←
∑T

k=1 (PCA last− PCA curr)2

10: penalty term← β × dif

11: loss value← 1
P

∑P
i=1 (Xi − X̂i)

2 − penalty term (Equation 2)
12: end if
13: return loss value

14: end function

input. The output is a pool of feature sets Al considered a novel way to represent329

X l. Such a new representation of the target dataset can subsequently be employed in330

constructing supervised classifiers.331

Algorithm 3 Feature Building Step 1

Input: X l as the target dataset,
ϱ as feature extractor pool

Output: Al as a pool of new labeled features of the target dataset

1: function Feature Extraction(X l , ϱ)
2: Al ← []
3: for fe in [ϱ] do
4: feature set ← fe.predict(X l)
5: Al.append(feature set)

6: end for
7: return Al

8: end function

The supervised model training phase represents the final step of the self-taught332

learning process. In this step, we evaluate the performance of a diverse set of classifiers,333

including support vector machines (SVM), random forest (RF), bagging (BG) with334
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decision tree as a base classifier, and Knora union-based dynamic selection (KnoraU) in335

the context of decision trees (DT) and RF ensembles. These classifiers were examined336

to determine their effectiveness in leveraging the previously generated representations.337

The evaluated fusion strategies include sum, product, and stacking. Table 2 presents338

the parameters empirically defined for each technique evaluated in the last step of the339

proposed method. The parameters not present in that table use the default values340

available in the Scikit-learn framework [34]. We conducted all experiments considering341

the same configuration, ensuring the reproducibility of the observed results.342

Table 2 Parameter settings of algorithms used in Step 3. Classifiers: single
(SVM), ensembles (BG: bagging with decision tree as a base classifier, RF:
random forest), KnoraU (DT: pool of trees; RF: random forest).

Algorithm Parameters

SVM

Kernel Linear
Penalty Parameter (C) 1e-6
Class Weight Balanced
Probability True

BG with DT

Max Depth 10
Tree Max Features sqrt
Number of Base Estimators 100
% of Training Samples 1.0

RF
Max Depth 10
Number of Trees 100
Oob score True

KnoraU
Number of neighbors 7

pool classifiers
Bagging DT
RF

Stacking
Meta classifier Logistic Regression
Solver lbfgs

Penalty parameter C 0.1

4 Experiments and Discussion343

This section describes the experiments to evaluate the proposed REL method,344

answering our two research questions.345

4.1 Experimental Protocol346

The target datasets are the Japanese Female Facial Expression (JAFFE) [35] and the347

Extended Cohn-Kanade (CK+) [36]. The JAFFE dataset is a laboratory-controlled348

image dataset with 213 images of 10 subjects (Japanese female models), with six basic349

facial expressions (happiness, anger, disgust, fear, sadness, and surprise) and a neutral350

one. In the JAFFE dataset, all ten subjects have one or more images for each class.351

The CK+ dataset is a laboratory-controlled dataset widely used to evaluate FER352

systems. It contains 523 sequences from 123 subjects, and 327 images of 118 subjects353
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are labeled with seven basic facial expressions (anger, contempt, disgust, fear, joy,354

sadness, and surprise). In the CK+ dataset, not all subjects have images in all classes.355

Before extracting features from face images, we pre-processed them, cropping only356

the region of the region of interest (face) and selecting the reference points. Fig. 4 illus-357

trates the pre-processing applied to a sample image from JAFFE and CK+ datasets.358

To detect and crop the face area of the image, we use the Viola-Jones face detection359

method [37]. The reference points on the cropped image align the images so they are360

in the same position.361

Fig. 4 Example illustrating the original image (left), face detection (middle), and landmark extrac-
tion (right) for (a) the JAFFE dataset and (b) the CK+ dataset.

As mentioned before, an unlabeled auxiliary dataset is necessary. The following362

auxiliary datasets were considered in our experiments:363

• Kyoto Natural Images [38]: The dataset contains 62 natural images of resolution364

256×200 pixels, used by several other works that apply the concepts of STL, thanks365

to its large variability. The images from our experimental protocol belong to a366

domain (FER) far from that dataset.367

• LabelMe [39]: The dataset consists of 50,000 images (40,000 for training and 10,000368

for testing), and each image is 256×256 pixels in size. The images belong to one369

of the 12 object classes: person, car, building, window, tree, sign, door, bookshelf,370

chair, table, keyboard, and head. For this paper, we used only the testing base.371

• Labelled Face in the Wild (LFW) [40]: is a publicly available dataset of face pho-372

tographs used for verification, also known as peer matching. The dataset has 13,233373

images of faces collected on the web from 5,749 people.374
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The first two auxiliary datasets have images that do not belong to the FER domain375

but differ in size (62 images for Kyoto and 10,000 for LabelMe). The rationale is to376

show whether the size of the auxiliary dataset may impact the proposed method. On377

the contrary, the third dataset comprises faces closer to the target domain. Fig. 5378

shows four image samples of each auxiliary dataset used in our experiments.379

Fig. 5 Samples from the datasets (a) Kyoto Natural Images, (b) LabelMe, and (c) Labelled Face in
The Wild.

The experimental protocol employs a LOSO cross-validation in the last step of the380

proposed method. In this cross-validation approach, the dataset is partitioned so that381

no subject in the test set appears in the training set. Suppose we have a dataset with382

N subjects; therefore, for each i-th fold, one subject will be designated as a test and383

the others for training. In such a protocol, when using the KnoraU dynamic ensemble384

selection, a subset of data (validation set) is extracted from the training set. Such a385

validation set is necessary since KnoraU needs to compute the competence of each386

classifier.387

4.2 Results on the FER problem388

For each target dataset (JAFFE and CK+), we performed experiments considering the389

three auxiliary datasets (Kyoto, LabelMe, and LFW) and representation ensembles of390

different sizes (5, 10, 15, 20, 30, 40, 50, 70, 100, and 150). The strategies S, A, L, SA, SL,391

LA, and SLA were tested in each experiment. It is crucial to notice that strategy A was392

used uniquely in the investigation, where we generated just five representations because393

it explores the depth of the CAE architecture. Thus, using a depth greater than394
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five layers makes the experiment almost impractical on the computational resources395

available for running the experiments.396

At the last step of our STL-based approach, we used the following inducers: SVM,397

RF, BG, and dynamic ensemble selection based on KnoraU executed in a pool of DTs398

and RF. For each ensemble of representations, we present the result of the best rep-399

resentation and their fusion (sum, product, and stacking). Furthermore, the standard400

deviation of all models inside the ensemble is calculated to provide an idea of the401

variability achieved in the generated ensemble.402

4.2.1 JAFFE as Target Dataset403

Tables 3, 4, and 5 present the results for the JAFFE dataset when CAE is trained with404

Kyoto, LabelMe, and LFW datasets respectively. The best outcome for the JAFFE405

datasets was achieved with an ensemble of 50 representations trained on the Kyoto406

dataset, varying the latent vector dimensionality (strategy L), and using KnoraU407

dynamic ensemble selection executed on an RF at each representation. Thus, by com-408

bining the results of each representation using stacking, we achieved 66.66% accuracy.409

The standard deviation inside the corresponding pool of representations was (+/-)410

3.33 percentage points. It is also important to note that the best single representation411

using KnoraU provided 42.00% accuracy.412

When using the LabelMe dataset (Table 4), the best result was achieved with an413

ensemble composed of 50 representations varying the latent vector size, architecture,414

and seeds (strategy SLA). The last step (supervised) uses KnoraU dynamic ensemble415

selection executed on an RF at each representation. The best single representation416

provided 44.67% of accuracy, while by combining the results of each representation417

using stacking, we achieved 65.25%.418

When using the LFW dataset (Table 5), the best result was achieved with an419

ensemble composed of ten representations. The best accuracy (65.25%) was observed420

by varying the seeds and the CAE architecture (strategy SA). The final inducer is421

an ensemble of SVMs combined via product rule. The best single SVM inside the422

ensemble achieved 61.39% of accuracy.423

Tables 3, 4 and 5 also present the accuracy standard deviation among generated424

representations (between brackets beside the best single result) that varies from 2.50 to425

6.89 percentage points (4.02 in average), what was expected in our method. The result426

analysis indicates that after 50 representations, there is no significant improvement427

in performance. Such an observation shows that, as in an ensemble of classifiers, we428

must empirically define the number of representations in our pool for each problem.429

In other words, a larger ensemble does not always mean a better performance. For430

instance, Fig. 6 shows that considering the results produced with the Kyoto dataset,431

an ensemble with 50 members may provide the same result as an ensemble with 150432

members, substantially reducing complexity.433

4.2.2 CK+ as Target Dataset434

Tables 6, 7, and 8 present the results for the CK+ dataset when CAE is trained435

with Kyoto, LabemMe, and LFW datasets, respectively. The best result for the CK+436

dataset (92.66%) was achieved with an ensemble of 50 representations trained on the437
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Table 3 Accuracy results using the LOSO protocol with a pool of 50 representations generated by
the proposed method. Kyoto and JAFFE are used as auxiliary and target datasets, respectively. FER
models based on a pool of SVMs, RF, BG, and dynamic selection based on KnoraU in a collection
of DTs and RF. Strategies S, L, and A represent different seeds, latent layer dimensions, and CAE
architectures. For each ensemble, the single best classifier and the following fusion strategies: sum,
product, and stacking. (*) is the pool accuracy standard deviation. The best results are in bold.

Strategy
Pool of
SVMs

Ensembles Dynamic Selection (KnoraU)
BG RF DT RF

S

Best Single 58.50 (3.24) 55.31 (4.24) 40.76 (3.63) 56.67 (4.22) 45.18 (4.12)
Sum 59.15 61.50 60.09 59.15 58.21

Product 59.15 57.27 59.62 59.15 57.27
Stacking 59.62 58.68 43.66 61.97 63.38

L

Best Single 60.42 (4.00) 51.37 (4.26) 44.74 (3.94) 51.89 (4.30) 42.00 (3.33)
Sum 60.09 61.03 60.56 61.03 62.44

Product 60.09 61.97 60.56 61.03 62.91
Stacking 61.03 60.56 48.82 61.97 66.66

SA

Best Single 61.19 (3.19) 49.54 (4.05) 44.45 (3.60) 50.47 (4.14) 42.71 (3.57)
Sum 61.97 61.32 62.91 59.62 61.50

Product 61.97 60.56 64.78 60.09 61.97
Stacking 60.56 59.62 53.05 60.56 63.84

SL

Best Single 61.47 (3.41) 52.63 (4.40) 43.50 (3.74) 51.72 (4.21) 44.38 (4.40)
Sum 61.03 61.97 57.74 61.03 60.09

Product 61.50 60.56 57.27 62.91 60.09
Stacking 62.44 59.62 43.66 62.91 63.84

LA

Best Single 60.61 (3.38) 50.05 (3.38) 47.23 (4.45) 52.88 (3.52) 48.14 (4.90)
Sum 60.56 61.03 61.97 61.03 62.91

Product 60.56 60.09 62.44 61.50 62.91
Stacking 60.03 61.97 51.17 61.50 61.50

SLA

Best Single 61.35 (3.37) 51.62 (4.36) 44.46 (4.36) 52.94 (4.11) 47.41 (4.20)
Sum 61.50 62.91 59.15 63.38 59.15

Product 61.50 61.97 59.62 61.97 59.62
Stacking 61.50 58.68 48.35 60.09 62.44

Kyoto dataset, varying the seeds and latent vector dimensionality (strategy SL) and438

using the fusion based on the stacking of SVMs. It is also essential to note that the439

best result based on a single SVM classifier in this experiment was 91.29%.440

When using the LabelMe dataset (Table 7), the best result of 91.74% was achieved441

with an ensemble composed of 30 representations and by varying the latent vector442

dimensionality (strategy L), using an ensemble of SVMs. The best result when using443

the LFW dataset as an auxiliary dataset (90.51%) was observed using the SL strategy444

and an ensemble of SVMs, as shown in Table 8.445

Unlike the JAFFE dataset, ensemble methods (BG, RF) and dynamic selection446

(KnoraU) were less effective on the CK+ dataset. One possible explanation is the447

relatively small standard deviation in accuracy among the generated representations448

on CK+ compared to JAFFE. The standard deviation for CK+ ranged from 0.7 to449

5.4 percentage points (average of 2.3), suggesting a lack of significant variation in the450

quality of the representations.451

As observed in the previous experiments on the JAFFE dataset, the behavior is452

similar here, confirming that we must define the best ensemble size empirically. Fig. 7453

shows that the best ensemble size was 50 when considering Kyoto and 70 when using454
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Table 4 Accuracy results using the LOSO protocol with a pool of 50 representations generated
by the proposed method. LabelMe and JAFFE are used as auxiliary and target datasets,
respectively. FER models based on a pool of SVMs, RF, BG, and dynamic selection based on
KnoraU in a collection of DTs and RF. Strategies S, L, and A represent different seeds, latent
layer dimensions, and CAE architectures. For each ensemble, the single best classifier and the
following fusion strategies: sum, product, and stacking. (*) is the pool accuracy standard
deviation. The best results are in bold.

Strategy
Pool of
SVMs

Ensembles Dinamic Selection (KnoraU)
BG RF DT RF

S

Best Single 57.08 (3.32) 50.53 (4.19) 44.30 (5.23) 50.79 (4.52) 42.44 (4.77)
Sum 55.86 61.97 59.15 61.03 61.03

Product 57.27 61.03 59.62 62.44 60.56
Stacking 56.33 59.15 50.70 62.44 62.44

L

Best Single 58.96 (5.56) 48.66 (4.36) 42.62 (3.84) 49.58 (4.30) 43.33 (3.59)
Sum 59.15 56.33 58.21 56.33 57.27

Product 58.68 56.33 58.21 55.86 56.80
Stacking 58.68 55.86 42.25 58.21 60.56

SA

Best Single 61.36 (3.20) 49.58 (3.96) 43.97 (4.72) 49.06 (3.94) 44.30 (4.24)
Sum 60.56 60.56 62.91 60.09 63.84

Product 61.50 58.68 62.91 60.56 63.38
Stacking 58.68 62.44 53.52 59.62 64.78

SL

Best Single 59.44 (2.98) 46.35 (3.11) 44.18 (3.90) 47.86 (3.12) 44.31 (3.54)
Sum 58.21 61.50 60.09 59.62 59.15

Product 57.74 55.86 60.56 59.62 59.15
Stacking 59.62 59.15 46.94 63.38 62.44

LA

Best Single 60.40 (3.51) 50.82 (5.00) 45.58 (4.65) 48.72 (4.96) 43.41 (4.61)
Sum 59.62 57.27 59.15 59.62 58.68

Product 60.09 58.68 60.09 58.68 58.21
Stacking 60.56 61.00 47.41 61.03 62.44

SLA

Best Single 60.78 (3.89) 50.15 (3.98) 44.12 (3.84) 52.52 (4.05) 44.67 (4.14)
Sum 60.56 59.62 60.09 60.56 60.56

Product 61.03 61.03 59.62 60.56 60.56
Stacking 59.62 61.03 50.23 61.97 65.25

LabelMe and LFW datasets. It points out that the performance of the generated455

ensemble is relative to the capacity to cover the problem space with complementary456

models, which does not depend on the pool size but on the algorithm’s ability to457

generate diverse representations.458

4.3 Ablation Study459

After generating the first representation, we consider a penalty term in the cost func-460

tion to ensure that subsequent representations are diverse, as denoted in Equation 2.461

The β parameter is a user-defined constant that plays an essential role in this sce-462

nario, as it is used to control the penalty applied for generating diversity between the463

representations. In other words, it regulates the importance of the penalty applied to464

representations to encourage the exploration of different regions of the feature space.465

The idea is to generate different autoencoders at each training step. We opted for a466

uniform β in this work, which proved effective and kept the model simple and effi-467

cient. However, different strategies can be investigated, for instance, varying the value468
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Table 5 Accuracy considering the LOSO protocol and a pool with 10 representations generated
with the proposed method. LFW and JAFFE are used as auxiliary and target datasets,
respectively. FER models based on a pool of SVMs, RF, BG, and dynamic selection based on
KnoraU in a collection of DTs and RF. Strategies S, L, and A represent different seeds, latent layer
dimensions, and CAE architectures. For each ensemble, the single best classifier and the following
fusion strategies: sum, product, and stacking. (*) is the pool accuracy standard deviation. The best
results are in bold.

Strategy
Pool of
SVMs

Ensembles Dynamic Selection (KnoraU)
BG RF DT RF

S

Best Single 60.52 (3.65) 44.99 (3.23) 38.93 (2.65) 42.72 (3.08) 38.73 (2.67)
Sum 58.68 53.99 50.70 52.58 51.64

Product 60.09 53.52 51.64 53.52 51.17
Stacking 60.56 55.39 44.13 51.17 53.52

L

Best Single 60.56 (3.82) 48.04 (3.84) 47.26 (5.11) 49.42 (3.96) 47.26 (4.83)
Sum 61.03 58.21 56.80 58.21 61.97

Product 60.56 60.56 57.74 58.68 61.03
Stacking 59.15 56.80 48.82 56.33 60.09

SA

Best Single 61.39 (2.99) 46.33 (5.04) 39.72 (3.35) 50.34 (4.12) 42.87 (3.16)
Sum 64.31 58.21 58.21 57.27 57.74

Product 65.25 58.68 60.09 57.27 58.68
Stacking 63.38 58.21 51.17 54.92 53.05

SL

Best Single 58.53 (4.01) 42.44 (3.78) 39.54 (3.18) 42.72 (3.64) 40.44 (3.51)
Sum 60.09 55.86 57.74 52.58 55.86

Product 59.62 57.74 56.80 52.58 55.39
Stacking 59.62 54.92 46.94 49.29 55.86

LA

Best Single 59.17 (2.50) 50.83 (4.86) 43.97 (4.87) 51.21 (5.31) 45.38 (5.22)
Sum 58.68 57.27 56.33 56.33 54.92

Product 59.62 58.21 56.33 57.74 54.46
Stacking 59.15 58.68 52.11 56.33 57.74

SLA

Best Single 58.92 (3.02) 54.24 (6.89) 42.54 (5.32) 51.88 (6.38) 44.51 (4.66)
Sum 61.97 56.80 59.15 54.92 58.21

Product 62.44 54.92 57.27 55.86 57.27
Stacking 61.97 56.33 52.58 53.05 58.21

of β across the training steps. Increasing β value may be a strategy to create more469

different autoencoders during training.470

The best results for JAFFE and CK+ datasets are shown in Tables 3 and 6,471

respectively. For the ablation study, we used the best performance settings. Thus, we472

generated 50 representations with the unlabeled dataset Kyoto and applied different473

values for the β. Table 9 shows the performance of the obtained model for each value474

of β.475

The best results on JAFFE and CK+ datasets were found using β = 0.001. When476

we increase or decrease the value of β, we reduce model performance. The β value is477

experimentally adjusted to find the right balance between the quality of the generated478

representations and the desired diversity. If the β is too low, diversity might not be479

encouraged enough, and representations might become too similar. On the other hand,480

if the β is too high, the penalty can completely overwhelm the objective, resulting in481

very diverse but potentially low-quality representations.482
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Fig. 6 The impact of varying the ensemble size in the best setup achieved for the JAFFE dataset
when using Kyoto, LabelMe, and LFW datasets as auxiliary ones.

Fig. 7 The impact of varying the ensemble size in the best setup achieved for the CK+ dataset
when using Kyoto, LabelMe, and LFW datasets as auxiliary ones.

4.4 Comparison with CNN-based Approaches and Related483

Works484

As stated in Section 1, the performance of supervised approaches against STL is a485

matter of discussion once the former is widely used in the literature and generally486

achieves the best results. Thus, to answer our RQ2 correctly, we assess the traditional487

supervised learning strategy using the LOSO protocol presented in Section 4.1, in488

which the samples of test subjects are not present in the training step.489
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Table 6 Accuracy considering the LOSO protocol and a pool with 50 representations generated
with the proposed method. Kyoto and CK+ are used as auxiliary and target datasets, respectively.
FER models based on a pool of SVMs, RF, BG, and dynamic selection based on KnoraU in a pool
of DTs and RF. Strategies S, L, and A represent different seeds, latent vector dimensions, and CAE
architectures. For each ensemble, the single best classifier and the following fusion strategies: sum,
product, and stacking. (*) is the pool accuracy standard deviation. The best results are in bold.

Strategy
Pool of
SVMs

Ensembles Dinamic Selection (KnoraU)
BG RF DT RF

S

Single Best 88.48 (2.63) 71.75 (3.09) 65.09 (2.01) 71.90 (2.79) 66.62 (1.90)
Sum 87.15 74.00 68.19 73.39 68.80

Product 87.46 74.92 69.11 74.31 68.80
Stacking 89.90 80.42 76.75 76.45 80.12

L

Single Best 89.87 (2.58) 72.45 (2.54) 69.78 (2.34) 71.10 (2.26) 69.13 (2.30)
Sum 89.60 75.84 71.55 75.22 72.17

Product 89.29 76.45 71.55 76.14 72.17
Stacking 90.82 77.98 78.89 74.31 81.34

SA

Single Best 89.47 (1.80) 71.55 (2.47) 66.66 (1.90) 73.88 (2.60) 67.74 (1.81)
Sum 89.90 74.92 70.64 75.22 72.17

Product 89.29 77.37 70.64 75.84 72.17
Stacking 90.21 80.12 75.84 75.84 78.89

SL

Single Best 91.29 (2.86) 72.57 (2.72) 68.31 (2.14) 72.14 (2.82) 67.37 (1.85)
Sum 89.60 74.92 70.64 74.00 71.55

Product 89.60 75.84 70.64 74.00 71.55
Stacking 92.66 77.67 77.06 74.31 78.89

LA

Single Best 87.18 (2.24) 72.06 (2.72) 68.88 (2.02) 73.33 (2.85) 69.51 (2.24)
Sum 86.85 77.37 71.55 77.06 72.47

Product 87.46 77.37 72.17 77.06 72.47
Stacking 88.07 79.81 76.14 78.28 79.81

SLA

Single Best 87.00 (3.05) 74.23 (3.16) 68.14 (2.20) 73.29 (3.04) 68.58 (2.28)
Sum 87.76 76.45 71.86 75.53 71.86

Product 87.76 77.06 71.86 76.14 72.17
Stacking 88.07 79.51 76.45 76.45 79.81

In the state-of-the-art, there are a plethora of ready-to-use CNN architectures. To490

avoid a biased comparison, the rationale is to select well-known networks that provided491

a breakthrough in their architectures and achieved competitive performances on the492

ImageNet Challenge [41].493

The first successful approach was made by Krizhevsky et al. [42], implementing494

a convolutional architecture named AlexNet composed of five layers. Next, Simonyan495

and Zisserman [43](VGG) proposed a more profound architecture. Contrary to the496

rationale of stacking layers that increase the depth of the network, Szegedy et al. [44]497

proposed the inception modules composed of a pattern of convolutional layers, pooling,498

and feature concatenation. The final architecture is a stack of Inception modules that499

provide a more comprehensive network and enhance the feature representation. So far,500

most of the proposed architectures have resorted to the fact that high performances501

should be achieved as the network grows. However, the vanishing of the gradient has502

become an issue. To minimize the overfitting, skip connections between adjacent layers503

were proposed in ResNet [45] and improved in DenseNet [46], which extends the skip504

connections between all network layers. Last, EfficientNet [47] proposed a technique505

to provide model scaling to improve the efficiency of the network.506

21



Table 7 Accuracy considering the LOSO protocol and a pool with 30 representations generated
with the proposed method. LabelMe and CK+ datasets are used as auxiliary and target datasets,
respectively. FER models based on a pool of SVMs, RF, BG, and dynamic selection based on
KnoraU in a collection of DTs and RF. Strategies S, L, and A represent different seeds, latent
vector dimensions, and CAE architectures. For each ensemble, the single best classifier and the
following fusion strategies: sum, product, and stacking. (*) is the pool accuracy standard
deviation. The best results are in bold.

Strategy
Pool of
SVMs

Ensembles Dinamic Selection (KnoraU)
BG RF DT RF

S

Best Single 89.57 (4.67) 69.50 (2.23) 66.93 (2.05) 69.97 (2.22) 66.72 (2.23)
Sum 87.46 73.70 70.03 73.08 70.03

Product 87.76 74.00 70.03 73.70 70.03
Stacking 89.90 78.89 77.37 75.22 79.20

L

Best Single 90.38 (2.25) 72.16 (2.27) 65.43 (1.47) 71.99 (1.99) 66.76 (1.78)
Sum 89.90 76.45 69.74 75.53 70.64

Product 89.90 75.84 69.72 76.45 70.64
Stacking 91.74 81.34 78.59 74.31 77.98

SA

Best Single 88.87 (1.91) 69.19 (2.13) 67.09 (2.11) 70.55 (2.16) 68.37 (2.09)
Sum 88.68 74.92 70.33 75.53 70.33

Product 88.68 76.75 70.64 75.53 70.33
Stacking 89.29 79.81 75.22 77.98 77.37

SL

Best Single 89.71 (2.60) 71.08 (2.45) 69.03 (2.16) 71.51 (2.17) 67.31 (1.63)
Sum 88.68 74.61 70.03 74.31 70.33

Product 88.99 74.61 70.33 74.92 70.03
Stacking 90.51 79.81 75.22 75.53 77.37

LA

Best Single 89.39 (3.84) 72.37 (2.68) 67.92 (2.53) 71.86 (2.82) 69.49 (3.01)
Sum 90.21 77.06 70.94 75.84 70.94

Product 89.90 77.67 71.25 76.75 70.94
Stacking 90.51 80.12 75.53 77.98 79.51

SLA

Best Single 90.45 (2.38) 71.17 (3.21) 66.38 (2.36) 73.13 (3.43) 67.93 (1.95)
Sum 89.29 75.22 70.33 74.92 70.64

Product 89.29 74.92 71.25 75.22 70.64
Stacking 90.51 79.81 76.45 76.14 76.75

The architectures mentioned above and their variants in terms of the number of507

layers were trained to JAFFE and CK+ datasets1. To a fair comparison, we have also508

included the encoder architecture of the CAE (Section 3.3). Except for the AlexNet and509

the CAEs, we have used the pre-trained weights on the ImageNet dataset, considering510

two different fine-tuning schemas. First, (1) all weights of convolutional layers are511

frozen, and only fully connected layers are fine-tuned to the FER problem. The second512

schema also fine-tunes the last convolutional layer (2).513

The rationale for using pre-trained weights is based on the fact that FER datasets514

do not have sufficient data to fine-tune deep models correctly. Besides, this strategy is515

a common practice in state-of-the-art [48–51] and should provide meaningful insights516

when comparing the TL with the STL strategy.517

Table 10 shows the performance of all experiments. The columns denoted with (1)518

and (2) represent the results using the respective fine-tuning schema for FER datasets.519

1All trained models are available for research purposes at [the hyperlink will be inserted in the final
version]
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Table 8 Accuracy considering the LOSO protocol and a pool with 5 representations generated
with the proposed method. LFW and CK+ are auxiliary and target datasets, respectively. FER
models based on a pool of SVMs, RF, BG, and dynamic selection based on KnoraU in a collection
of DTs and RF. Strategies S, L, and A represent different seeds, latent vectors, and CAE
architectures. For each ensemble, the single best classifier and the following fusion strategies: sum,
product, and stacking. (*) is the pool accuracy standard deviation. The best results are in bold.

Strategy
Pool of
SVMs

Ensembles Dinamic Selection (KnoraU)
BG RF DT RF

S

Best Single 83.24 (1.69) 66.75 (1.68) 63.22 (1.28) 66.96 (2.04) 64.77 (1.17)
Sum 85.93 73.08 68.80 71.86 69.41

Product 85.93 73.39 69.11 73.08 69.72
Stacking 87.15 74.92 73.70 72.47 72.47

A

Best Single 84.91 (0.74) 66.82 (1.04) 65.38 (1.42) 67.20 (0.96) 66.37 (1.80)
Sum 87.46 74.00 67.88 73.70 70.03

Product 88.07 74.92 68.19 74.00 70.33
Stacking 87.76 76.45 73.70 73.39 74.31

L

Best Single 84.27 (3.47) 68.62 (3.21) 64.26 (2.50) 69.15 (3.20) 64.50 (2.25)
Sum 87.76 75.35 68.80 75.53 68.50

Product 87.46 77.06 68.19 74.92 68.80
Stacking 87.46 78.28 74.92 76.14 73.39

SA

Best Single 88.16 (3.35) 71.96 (3.05) 66.77 (1.56) 72.45 (3.01) 67.07 (2.36)
Sum 87.76 72.17 70.64 71.55 71.55

Product 87.76 73.08 70.64 71.55 71.55
Stacking 88.99 74.61 75.84 71.55 74.31

SL

Best Single 85.69 (0.99) 68.75 (2.29) 66.96 (2.46) 68.77 (1.88) 68.26 (2.22)
Sum 90.21 75.53 70.33 75.84 70.64

Product 89.60 75.22 70.33 75.53 70.94
Stacking 90.51 78.89 77.67 75.22 77.37

LA

Best Single 83.92 (1.42) 71.56 (2.68) 67.17 (1.30) 69.83 (2.02) 68.24 (1.72)
Sum 87.15 72.47 70.94 73.08 70.33

Product 86.85 73.39 70.33 72.78 70.33
Stacking 87.76 76.75 77.06 71.86 75.22

SLA

Best Single 86.70 (5.41) 71.14 (4.09) 66.97 (2.69) 70.67 (3.90) 65.14 (1.86)
Sum 86.54 74.92 69.41 73.08 69.41

Product 85.62 75.22 69.72 74.61 69.41
Stacking 86.85 74.61 73.70 73.70 74.00

Table 9 Ablation experiment of the β
parameter considering the best setup of
the proposed method for JAFFE and
CK+ datasets.

β Accuracy (%)

JAFFE

0.0001 60.56
0.001 66.66
0.01 62.91
0.1 60.56

CK

0.0001 91.13
0.001 92.66
0.01 89.60
0.1 90.82
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Table 10 CNN architectures trained with the LOSO protocol and two
fine-tuning strategies (1, 2).

Architecture CK(1) CK(2) JAFFE(1) JAFFE(2)

VGG 16 78.9 46.8 40.6 14.1
VGG 19 81.4 61.1 44.5 14.5
InceptionV3 75.7 84.2 42.2 36.9
ResNet50 84.3 81.6 56.7 47.9
ResNet101 83.5 81.3 43.4 51.2
InceptionResnetV2 78.5 84.6 36.6 44.2
EfficientNetB0 80.6 86.3 38.3 49.0
EfficientNetB7 75.2 83.5 33.6 52.6
DenseNet121 81.1 81.1 54.9 45.4
DenseNet201 85.8 82.0 54.5 50.7
Encoder (CAE)∗ 69.3 39.3
Alexnet∗ 70.6 42.9

Ours 92.66 66.66

(∗)The model was trained from scratch (no pre-trained weights)

Finally, the models marked with an asterisk represent those trained from scratch once520

they had fewer layers to fine-tune.521

The results allow us to draw some conclusions. The proposed REL surpassed pre-522

trained CNN models. The best CNN-based solution for the JAFFE dataset achieved523

56.7% using ResNet50, while the proposed STL-based solution achieved 66.66% on the524

same dataset. A similar behavior was observed for the CK+ dataset. The best CNN525

solution achieved 86.3%, while the proposed STL-based method achieved an accuracy526

of 92.66%. It means that independently of the fine-tuning schema, the STL can surpass527

the TL by a fair margin, providing a better representation even when learning features528

from a different context.529

The trade-off between classification time and accuracy is discussed when com-530

paring STL and traditional supervised approaches. To clarify this, we evaluated the531

classification time for each test set using the LOSO protocol. The results are depicted532

in Figs. 8 and 9, for JAFFE and CK+ datasets, respectively. In such an analysis,533

we compare the best ensemble generated by the REL algorithm against traditional534

supervised learning approaches, previously discussed in Table 10. They are compared535

considering execution time during the test (classification time), accuracy, and model536

size in megabytes.537

The proposed approach generally exhibits a better trade-off regarding classification538

time versus accuracy. A practical example can be seen in Fig. 8, where the RF-KnoraU539

approach outperforms the well-known networks VGG16, Inception, and ResNet. In540

Fig. 9, the result of the REL algorithm obtained using a pool of SVMs on the CK+541

dataset outperforms CNN architectures in terms of accuracy and most of them in542

terms of classification time.543

Finally, we present a comparative study with the results of our proposed model,544

which addresses the generation of a pool of unsupervised representations and its rela-545

tionship with the most recent advances in facial emotion recognition, using the same546
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Fig. 8 Comparison of the proposed STL-based method (in red) with CNN architectures (in blue) in
terms of accuracy (%), classification time (in seconds), and disk space (in megabytes) as the circle size.
Results were computed using the JAFFE dataset and the LOSO protocol. The STL-based method
considers the final classifier RF with KnoraU dynamic selection.

Fig. 9 Comparison of the proposed STL-based method (in red) with CNN architectures (in blue)
in terms of accuracy (%), classification time (in seconds), and disk space (in megabytes) as the circle
size. Results were computed using the CK+ dataset and the LOSO protocol. The STL-based method
considers as the final classifier a pool of SVMs.

experimental protocol. This comparison aims to provide an expanded understanding547

of the contributions and improvements brought by our approach. Our effort focused548

on gathering the most significant possible number of studies that adhered to the same549

adopted evaluation protocol based on the LOSO protocol. Tables 11 and 12 present550

the highest accuracies observed in JAFFE and CK+ datasets, respectively, that have551

been documented in widely referenced scientific publications and conferences. The552

data revealed that the proposed method sets a new benchmark for facial expression553

recognition.554
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Table 11 Benchmark comparison on the JAFFE dataset using the LOSO protocol.

Reference Method Accuracy (%) Classes Feature Type

Kola & Samayamantula [52]
LGC-HD 60.70 6 Handcrafted
LGC-HD 58.20 7 Handcrafted

Kartheek et al. [53] RMP Prime 61.64 6 Hand-crafted

Mandal et al. [54]
DRADAP 57.22 6 Handcrafted
ARADAP 56.20 7 Handcrafted

Our Method 66.66 7 Deep

Table 12 Benchmark comparison on the CK+ dataset using the LOSO protocol.

Reference Method Accuracy (%) Classes Feature Type

Du & Hu [55]
WPLBP 91.72 6 Handcrafted
WPLBP 86.47 7 Handcrafted

Wu & Lin [56]

GM 86.83 7 Deep
GM+AFM 87.78 7 Deep
GM+ W-AFM 88.25 7 Deep
GM + W-CRAFM 89.84 7 Deep

Lee et al. [57] CER-ICV 92.34 7 Handcrafted

Kola & Samayamantula [52]
LGC-HD 72.80 6 Handcrafted
LGC-HD 70.60 7 Handcrafted

Our Method 92.66 7 Deep

Through these experiments, it becomes evident that generating a pool of unsu-555

pervised representations characterized by their diversity plays a fundamental role in556

improving the performance of an FER system.557

4.5 Discussion558

Concerning the auxiliary dataset, the experiments showed that the best results were559

found when the ensemble of representations was learned using the small Kyoto dataset.560

Moreover, such a dataset is far from the target domain, but it still provides better561

results when compared to those observed using the LFW dataset, which is composed562

of faces. In summary, our results indicated that the variability of images within the563

dataset is a more critical factor for performance than the total number of images or564

the proximity to the target problem. This finding suggests that the right choice for the565

auxiliary dataset must consider data diversity (image variability), which is essential566

for learning robust representations.567

Based on the results observed in our experiments and analyses, we can posi-568

tively answer our first research question, RQ1. The unsupervised representations with569

diversity obtained through the REL algorithm significantly impacted the performance570

of the proposed FER model. By incorporating diversity in an unsupervised man-571

ner through different initialization strategies and a custom loss function, the REL572

algorithm has demonstrated its effectiveness in producing a set of comprehensive573

representations. These representations capture latent and complex features in facial574

expressions, allowing the model to extract meaningful and distinctive features.575
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We obtained high accuracy in recognizing facial expressions by training the model576

with the unsupervised representations generated by the REL. The proposed method577

is up to 5.1% and 1.3% better than the single classifier for JAFFE and CK+ datasets,578

respectively.579

The diversity introduced by REL made it possible for the model to become more580

adaptable to different variations in expressions, including nuances and subtle differ-581

ences between categories of expressions. In addition, the generalizability of the model582

has been greatly improved. The diversified representations allowed the model to learn583

general characteristics that were not restricted to a specific set of training data, mak-584

ing it more efficient in identifying facial expressions in new datasets. This reduces the585

tendency to overfit by preventing the model from overspecializing on specific training586

data.587

Furthermore, including a pool of unsupervised representations generated by the588

REL algorithm facilitated the knowledge transfer process. The pre-training of the589

unsupervised representations allowed the FER model to initialize with more compre-590

hensive knowledge and, later to be adjusted for the specific FER task. This improved591

the overall performance of the model.592

The answer to our second research question (RQ2) was only possible after the last593

experiments in which the proposed STL-based approach was compared favorably with594

the CNN-based FER solutions.595

The comparative analysis between the proposed method and the CNN models596

adjusted for JAFFE and CK+ datasets revealed considerable improvements in terms597

of precision. Specifically, the proposed method outperformed the fitted CNN models598

by up to 9.9% in the JAFFE dataset and by up to 6.3% in the CK+ dataset. These599

substantial gains in accuracy are of great relevance and demonstrate the effectiveness600

of the STL-based approach.601

A favorable comparison with supervisory-based CNN solutions suggests that the602

proposed STL-based approach can provide more promising and reliable results for603

Facial Expression Recognition. By eliminating the need for many labels in the early604

stages of training, the STL approach has proven to be efficient and cost-effective while605

achieving competitive results in terms of accuracy and generalization.606

5 Conclusion607

We have proposed a new method based on STL applied to the FER problem. The608

primary advancements within our self-taught learning approach, as compared to the609

existing literature, can be summarized as (a) the REL algorithm, which can generate610

a pool with diverse representations using an unsupervised dataset, and (b) a robust611

performance evaluation, drawing a direct comparison between our suggested unsuper-612

vised FER solution and supervised methods within identical conditions, this entails613

utilizing the same experimental protocol and addressing the challenges posed by a614

genuine and challenging task such as FER.615

As future work, we plan to investigate different directions. First, we intend to616

evaluate an alternative scheme for the loss function employed while learning the unsu-617

pervised set of latent representations, aiming at amplifying the diversity. Second, we618
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plan to extend the evaluation of the proposed REL algorithm to cover different target619

problems, exploring its applicability and effectiveness in other contexts. In addition,620

we plan to consider the investigation of transformers and large vision models, espe-621

cially to evaluate whether these architectures provide additional performance gains622

compared to those explored in our work. These initiatives aim to improve further the623

scope and robustness of our contributions.624
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