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Abstract—Dynamic classifier selection (DCS) regards well-
known machine learning techniques in the batch setting that
leverage ensemble performance. Most of the methods use
similarity-based methods as a proxy, culminating in high com-
putation costs and becoming unfeasible in many streaming
scenarios. In this paper, we propose a DCS method able to
cope with the high-speed streaming setting, which is based on
the performance of base learners in the most recent instances.
The impact of our method is evaluated with different ensembles
for data streams. We also propose modifications to an Online
Boosting method, which has its performance improved with DCS.
Our method increases the accuracy and kappa statistic of state-
of-the-art ensembles with low overhead of time processing and
memory.

I. INTRODUCTION

Online Machine Learning focuses on extracting knowledge
from a high amount of data generated in many scenarios, such
as bank transactions, spam filters, sensors, social media, and
others. In the stream setting, data arrives continuously, one at
a time, possibly supporting infinite arrival. Unlike standard
Machine Learning, known as batch-setting, the predictive
models take into account limitations in memory because it is
unfeasible to store a high amount of instances, and processing-
time, since an instance must be processed faster than the arrival
of another instance, otherwise data must be discarded [1].

Additionally, the data distribution might change throughout
time, an effect known as concept drift [12]. This change can
affect the performance of predictive models, which must adapt
in case of detection.

Ensemble-based methods are state-of-the-art algorithms for
the data stream classification problem. These models combine
the prediction of predictive models, having superior perfor-
mance compared to monolithic models [2].

In general, ensembles in the stream setting literature are
versions of batch setting algorithms, such as Bagging [3],
Boosting [4] [5], and Random-Subspace-based [6] [7] [8].
Even if ensembles are more efficient than monolithic models,
issues such as diversity maintenance, accuracy maintenance,
and resource usage are still open questions in stream and batch
settings. For instance, it is known that not every ensemble
member might positively impact the final vote given by the
ensemble, and selecting a subset of the ensemble to vote can

achieve higher predictive performance. This process is known
as the selection of classifiers [9].

Many works in literature propose novel dynamic classifier
selection methods in the batch setting. In [9], the authors show
that dynamically selecting classifiers to vote each instance
is better than always selecting the same subset of classifiers
for voting (static selection) and divided dynamic selection of
classifiers into two approaches: (i) individual-based, where
only one classifier of the ensemble is selected to classify an
instance, and (ii) group-based, in which one or more classifiers
of the ensemble are selected to vote an instance.

In the stream setting, as in the batch setting, most selection
methods use kNN to determine the competence region of
learners of an ensemble [9], [23]. Consequently, kNN causes
a high overhead of processing time, being not practical in
various streaming situations.

In this paper, we propose a Dynamic Selection of Classifiers
(DCS) method to cope with streaming scenarios based on
mass functions and Short-Term Assessment. Our proposal
exploits the fact that classifiers can have a good performance
in a concept (most of the ensembles in literature weights
the vote of a classifier based on its accuracy), but does not
perform well in the short term, having a negative impact in
the final ensemble vote. We use sliding windows to store
the performance of members of the ensemble in the most
recent instances and apply dynamic selection of classifiers
strategies. Experiments show that our method can achieve
improvement in the performance of state-of-the-art data stream
mining methods such as ARF [19], SRP [20], and BOLE [10].
The contributions of this work are summarized below:

• Usage of short sliding windows with different metrics to
select classifiers in online ensembles.

• Empirical demonstration that selection of classifiers based
on the sum of mass functions has the best results overall.

• Modifications to the BOLE algorithm [10], having its
performance potentiated with DCS and becoming a strong
contender in state-of-the-art methods.

This paper is divided as follows. Section II presents the
formal definition of data stream classification, concept drift,
and dynamic selection of classifiers. Section III discusses
related works on ensemble learning and dynamic selection
of classifiers. Section IV introduces our method and mod-



ifications to BOLE, which has its performance potentiated
by our proposal. Section V reports the experimental results
obtained. Finally, Section VI concludes this paper and states
future works.

II. DATA STREAM CLASSIFICATION

This section defines data stream classification, concept drift,
and dynamic selection of classifiers problems.

A. Classification Problem

A data stream is a set S = {(X,Y )}, with X =
{x⃗1, . . . , x⃗n}, a set of vectors of features, Y = {y1, . . . , yn}
a set of labels and n potentially tends to infinite. The aim is
to build a predictive model that ideally represents the image
of the classes (represented by distinct labels), given a vector
of features (f : x⃗n → yn).

B. Concept Drift

A concept C is a set of class probabilities and a density
function of conditional class probabilities [11], defined as
follows :

C =
⋃

x⃗n∈X,yn∈Y

(P [yn], P [x⃗n|yn]) (1)

In 2 time stamps ti and tj in a stream S, if tj > ti and
Cti ̸= Ctj , a concept drift occured. We reference the reader
to the following works for more details about concept drift.
[12], [13].

C. Dynamic Selection of Classifiers

Given a pool of classifiers H = {h1, . . . , hm}, a set of
base learners to vote a label ym, a constrain c to discriminate
learners with positive impact for the vote, H ′, the set of
hypotheses with a selection of classifiers is defined by:

H ′ =
⋃

hi∈H

{
hi, if ci
∅, otherwise (2)

The strategy to obtain the final hypothesis may differ for every
ensemble and considers H ′ instead of H to determine the
labels.

III. RELATED WORKS

This section introduces related works on (i) ensemble-based
methods for streaming data and (ii) dynamic selection of
classifiers.

A. Ensemble methods

Many works of literature introduce new ensemble methods
to cope with streaming scenarios. One of the first works on
ensemble learning for data stream mining is the online version
[14] of Bagging [3] and Boosting [4] [5]. In Online Bagging,
the authors simulate sampling with instances replacement by
training with an instance k times, being k a variable that
follows a Poisson(λ = 1) distribution.

The probability of a base learner training with an instance
once or more times is P [k > 0] = 1 − P [k = 0] =

1 − 1
e·k! = 1 − 1

e·0! ≈ 63%. In [15], the authors propose
the Leveraging Bagging algorithm and simulate sampling with
Poisson(λ = 6). This way, a base learner has ≈ 99% chance
of training with an instance once or more times. This makes
the members of the ensemble more specialized but causes an
additional computation cost. Each ensemble member has an
ADWIN detector [16]. If a concept drift is detected, the worst
member of the ensemble (in terms of the estimated ADWIN
error) is reset.

In [19], the authors propose the Adaptive Random Forest
algorithm, a version of the Random Forests [6] to the stream
setting, combining Poisson(λ = 6), a subset of random
features per node, so the trees evaluate a split, an ADWIN
detector such as in [15], background learners to deal with
evolutionary (with concept drift) streams and vote weighted by
accuracy. In [20], the authors propose the Streaming Random
Patches (SRP) algorithm, a version of the Random Patches
[7] [8], using the same mechanisms as in ARF, but instead of
considering a random subset of features per node, all of the
split attempts are evaluated with a random subset of features
defined at the creation of the base learner.

To adapt Boosting to streaming settings, the authors in [14]
propose a classifier is trained with an instance k times, being
k a variable that follows a Poisson(λ = hn−1) distribution,
receiving weights for the train based in the performance of
another base classifier from the previous layer.

In [10], the authors present the Boosting-like Online Learn-
ing Ensemble (BOLE) algorithm. The authors propose changes
to the Online Boosting [14] algorithm.

Instead of performing linear boosting, i.e., a classifier in-
fluences the training weights of the classifier that was created
after him at the creation of the ensemble, there are restrictions
regarding which classifier will receive the training weight.

First, all classifiers are sorted by predictions rate (line
4, Alg. 1), being a best-case scenario insertion sort (O(n))
because the higher number of processed instances lower is the
variation in correct predictions rate will be (for more details,
we refer the reader to the implementation by the authors in
the MOA framework [17]).

Initially, the classifier with the worst prediction rates will
start training when an instance I arrives. If I is correctly
classified, it is assumed that base learners with higher correct
prediction rates also have a great chance of correctly classify-
ing the instance (an error is unlikely), and the best classifier
not yet trained in the ensemble will receive the weight for
training (line 5-8, Alg. 1). Otherwise, the worst classifier not
yet trained will receive weights for voting (line 9-11, Alg. 1).
It is worth noting that the value of λ decreases in case an
instance is correctly classified (line 19, Alg. 1) and increases
if there is a misclassification (line 23, Alg. 1). Unlikely errors
have less impact in λ as more instances are processed since
the classifiers with the best prediction rates will be trained
subsequently. Base learners with the worst prediction rates
that are the ones likely to make mistakes, receive the training
weights more towards the end of the training process.

In BOLE, each member of the ensemble has a DDM



Algorithm 1 BOLE Training
Input: ensemble size M , ensemble h, instance I , number of

processed instances N
1: minPos← 1; maxPos←M
2: correct← false
3: λ← 1
4: sort h by λsc

m

λsc
m+λsw

m
in ascending order;

5: for m← 1 to M do
6: if correct then
7: pos← maxPos
8: maxPos← maxPos− 1
9: else

10: pos← minPos
11: minPos← minPos+ 1
12: end if
13: K ← Poisson(λ)
14: for k ← 1 to K do
15: hpos ← Train(hpos, I)
16: end for
17: if hpos has correctly classified I then
18: λsc

m ← λsc
m + λ

19: λ← λ( N
2·λsc

m
)

20: correct← true
21: else
22: λsw

m ← λsw
m + λ

23: λ← λ( N
2·λsw

m
)

24: correct← false
25: end if
26: end for
27: return h

[18] concept drift detector. If a warning is detected, a new
background learner is created and trained. If a drift is detected,
the background learner substitutes the main base learner.

B. Dynamic Selection of Classifiers

Dynamic selection of classifiers is a family of algorithms
that deals with the combination of classifiers’ votes of ensem-
bles, and many works have been done for the batch setting.
The selection is dynamic because the subset of classifiers
selected for voting can change at each processed instance.
Most methods in the batch setting make usage of kNN,
weighting classifiers votes based on the Nearest-Neighbours
of the processed instance, known as the region of competence.
Some of the most relevant works in this area are:

• K-Nearest-Oracles Eliminate (KNORA-E) [21]: Select
the classifiers with the highest accuracy in the region of
competence.

• K-Nearest-Oracles Union (KNORA-U) [21]: Select the
classifiers that have at least one right prediction at the re-
gion of competence. The vote of the classifier is weighted
according to the accuracy in the region of competence.

• META-DES [22]: A new classifier is created based on
metrics of the region of competence to select new clas-
sifiers of the ensemble.

Most of the methods in the DCS literature calculate the
nearest neighbors of each instance, being impractical in many
streaming scenarios due to the high computation cost.

In a scenario where KNORA is used in the stream setting,
for instance, each base learner must store the result of the
instances buffered by the kNN (unfeasible because of memory
issues), or each base learner must classify again the k-nearest-
instances of the region of competence, which is unfeasible
because of time processing issues. Besides, there is also the
calculation cost of the nearest neighbors, that is O(k×n×d)
with brute force and O(n× log n× k) with KD-Tree, where
k is the number of neighbors, n is the number of instances
buffered, and d is the dimension of the instances.

Dynamic Selection Based Drift Handler [24] deals with the
stream in chunks. At each chunk, a new classifier is trained
and added to the ensemble. Each chunk is a validation set,
and in the prediction process, a batch DCS method is used.
Preprocessed DCS I [25], and II [26] (PDCS I and II) are
methods that focus on the imbalanced classification problem.
Both methods deal with the stream as a chunk and have
preprocessing techniques to treat imbalanced data applied to
the chunk, being under or over-sampling. In PDCS I, for
each chunk of data, an offline bagging ensemble is created.
If the maximum value of ensembles (user-given) is reached,
the ensemble with the lowest balanced accuracy (BAC) is
removed. PDCS II can train in any classifier, and members
of the ensemble are removed when a classifier has a BAC
lower than a user-given threshold. In scenarios where there
are no time processing limitations, this method can be a good
fit.

In [23], the authors propose the Double Dynamic Classifier
Selection, which has Online Bagging and online base learners
such as Naive Bayes and Hoeffding Tree [1]. Even being
significantly more efficient than the methods cited earlier,
chunks of data and kNN are still used.

IV. MASS-BASED SHORT TERM SELECTION

To avoid manipulating chunks of data, since the chunk size
is hard to determine, our proposed method explores the pre-
quential evaluation, i.e., when an instance arrives, a classifier
predicts the instance and receives the label for training. These
steps are repeated until no more instances arrive. Also, in the
prequential evaluation, it is possible to know the number of
correct predictions of a base learner at any time.

Our proposed technique selects classifiers by observing
only the performance in the short term, being the region
of competence in the last n instances evaluated. As cited
earlier, most of the online ensemble methods weight votes
by accuracy, and there is the possibility that a learner has a
good performance in the long term but a bad performance
in the short term, negatively impacting the final vote of the
ensemble.

The selection of classifiers strategies proposed in this paper
is based on the number of correct predictions of each base
learner in the last ten instances. Three selection strategies were
tested. A classifier is selected for voting if its number of right



predictions is higher than (i) a fixed threshold, (ii) a fixed
threshold and mean of right predictions among learners in the
most recent instance, or (iii) higher than a fixed threshold
and mode of right predictions among learners in the most
recent instances. At least one classifier must fulfill the chosen
requirement; otherwise, every learner of the ensemble votes.
We opted to have a sliding window with size 10 for the
following reasons:

• Memory: since each ensemble classifier needs a sliding
window, large windows can compromise memory usage
for large ensembles.

• Processing-time: small windows are preferable to extract
metrics with a low cost of processing time.

The incremental update of sliding windows is presented in Alg.
2. The mass function of right predictions (mfrp) is calculated
in lines 11-16. Since the region of competence is small, it is
possible to test fixed thresholds to allow classifiers to vote.
Besides, the probability of the mfrp being sparse is lower,
increasing the number of voting classifiers and still inducing
diversity. In larger regions of competence, in which the mfrp
is probably sparse, metrics such as fixed thresholds need
statistical analysis, such as quantiles, elevating the number of
parameters, and mode becomes a not significant metric since
the mfrp frequencies would be similar and would not represent
how well the most of the learners are performing. In the batch
setting, a small region of competence is suggested in [27],
being the region of competence the 7-nearest neighbors to the
test instance.

Formally, the discrete mass function of right predictions is
defined as:

f(n) = |H⋆(n)| (3)

where H⋆(n) is the set of base learners with n right predic-
tions in the spam of the sliding window.

Another strategy tested consists of defining the threshold
as the mode of the sum of the mfrp in the last δ instances.
The sum of the mfrp in the last instances takes into account
the performance (mfrp distribution) of the learners in a higher
spam of instances, making the threshold not affected by abrupt
changes. To achieve this, it is only necessary to set the mass
control array maximum size (Alg. 2) to larger values without
significant additional computation cost.

We refer to the application of short sliding windows and
mfrp in DCS as Mass-based Short Term Selection (MSTS).
The mfrp update runs in O(1), while the threshold calculation
runs in O(swmax), necessary to calculate the metrics used in
this work.

A. Dealing with concept drift

For both ARF and SRP, short sliding windows were created
for background learners. In case a drift is detected, and
the background learner substitutes the main base learner, the
sliding window is also substituted by the background learner
sliding window.

In the original BOLE implementation by the authors in
the MOA [17] framework, the values of λsc

m and λsw
m are

Algorithm 2 Performance Mass Update
Input: sw : Sliding window of a classifier, sw max : sliding

window maximum size (user-given), mc : mass control
array, mc max : mass control maximum size (user-given),
m : mass array (size = sw max + 1), I : instance

1: for classifier ∈ Ensemble do
2: if classifier.GetV ote(I) = I.value() then
3: increment classifier.right predictions by 1
4: classifier.sw.insert(1)
5: else
6: classifier.sw.insert(0)
7: end if
8: if classifier.sw.size() > sw max then
9: classifier.sw.remove first()

10: end if
11: mc.insert(classifier.right predictions)
12: increment m[classifier.right predictions] by 1
13: if mc.size() > mc max then
14: decrement m[mc[0]] by 1
15: mc.remove first()
16: end if
17: end for
18: calculate threshold()

not changed in case a concept drift is detected. This means
that the values of λsc

m and λsw
m are influenced by the learners

that are actively classifying instances. This happens because
resetting the values of λsc

m and λsw
m can lead to the creation of

a large number of too-weak base learners, thus imbalancing
the ensemble. Aiming not to drastically change the subset
of classifiers that vote, we opted to make the background
learner inherit the sliding window of the main base learner in
case a drift is detected. The background learner will have the
same potential to vote since background learners will receive
similar weights compared to the previous learner after the drift
detection.

B. Modification in BOLE

We present a modification to the variation factor of λ (lines
19 and 26, Alg. 1) in the training phase. Instead of scaling
the values of λsc

m and λsw
m to half the number of observations

by the ensemble (N2 ) (lines 19 and 23, Alg. 1) [14], we scale
the values to the total number of observations (N ). The value
of λsc

m will decrease and λsw
m will increase, as desired [14],

and the cumulative values of λ will be larger, making more
specialized learners. However, scaling λsc

m and λsw
m with larger

values make the variation factors of λ in right predictions
higher (f c

m < 2 [14]), training with unnecessary weights in
case of right predictions. We suspect this is the reason for
having a decrease in accuracy in some datasets, and since λsc

m

and λsw
m affect learners in the long term, our DCS method

that takes into account the performance of base learners in
the short term overcomes this problem. This is discussed in
section V.



V. EXPERIMENTS

In this section, we discuss the application of our DCS
method in state-of-the-art ensembles. First, we introduce the
experimental protocol adopted, followed by the results ob-
tained and discussion.

We also made a repository1 that contains the code of our
method and additional results, given the high number of
experiments.

A. Experimental protocol

All the experiments were done with a prequential evaluation,
in which instances are presented one by one, first for testing
and later for training. Since all the methods in the DCS
literature do not cope with the prequential evaluation, it is
not possible to compare methods of the literature with our
method. Therefore, we compared ensemble methods with and
without our DCS proposal.

All the ensembles were set with 100 classifiers, and ex-
periments were done with three state-of-the-art ensembles,
namely ARF [19], SRP [20], and BOLE [10]. We excluded
Leveraging Bagging [15] from experiments because of the
high computation cost and inferior results compared to ARF,
as shown in [19]. All the experiments were done in the MOA
[17] framework. ARF and SRP were set with the parameters
of their original papers. We denote BOLEL1 as BOLE with
the proposed changes and BOLEL2 as the standard. For all
ensembles, we used Hoeffding Trees [1] as base learners with
Grace Period = 50, i.e., a split attempt occurs at every 50
instances.

We tested fixed thresholds between [3, 6] to evaluate the
best value overall and applied metrics such as mean and mode
higher than the fixed thresholds. To denote the sum of mfrp
used with mode, we denote the parameter δ as the number of
instances considered to the sum. Given N , the n-th observed
sample, F , the function considered for threshold calculation
and fn, the mfrp of the n-th observed sample is given by
Equation 4:

F =

δ∑
i=1

fN−i (4)

We tested values of δ for each algorithm from [1,4]. We
refer to the algorithms without DCS (standard) as native. We
did experiments in 14 datasets, nine real-world datasets, and
five synthetic datasets. The synthetic datasets and parameters
used are discussed as follows.

a) AGRAWAL [28]: This generator has six nominal fea-
tures and three numerical features. Ten distinct functions map
two classes. In this dataset, we simulate three abrupt datasets.

b) SEA [29]: This generator produces 3 numerical fea-
tures (f1, f2, f3). If f1 + f2 ≤ θ, the class has value 1,
otherwise 0. In this dataset, we simulated three gradual drifts
by changing the values of θ.

1https://sites.google.com/view/msts-paper

c) MIXED [18]: This generator has 2 boolean features
v and w, and 2 numerical features x and y between [0, 1].
The examples are positive if two of the three conditions are
satisfied: v, w, y < 0.5 + 0.3 ∗ sin (3πx). Concept drift is
simulated by inverting how classes are labeled. In this dataset,
we use an imbalanced and balanced version and simulate three
abrupt drifts.

d) RBF: This generator produces ten features and 5
class values. Data is generated based on the radial basis
function (RBF). Centroids are generated in random positions
and mapped with a standard deviation value, a weight, and
a class label. In this dataset, incremental drifts are simulated
by changing the centroids’ position at a continuous rate. The
parameters used were 50 centroids at a speed change of 0.001.

The real-world datasets used were Outdoor, Nomao, Elec,
GMSC, Rialto, Airlines, Covtype, Poker-Hand, and KDD99.

More details on the used datasets and their references can
be found in the auxiliary repository.

B. Discussion

Tables I and II show the prequential accuracy. We opted to
use fixed threshold = 5 and δ = 3 by having the best overall
results per algorithm (see repository). MSTS leveraged Native
ARF and Native BOLE, and MSTS-ARF-Mode presented
the best-reported results. All versions of MSTS-BOLEL1 and
MSTS ARF had better results than Native SRP, while Native
BOLEL1 and Native ARF do not have results better than Na-
tive SRP. Accuracy gains were more noticeable in real-world
datasets, especially in the datasets Elec, Covtype, Rialto, and
Outdoor. The best-reported average gain in comparison with
native algorithms was 1.38% for MSTS-ARF-Mode, 1.60%
for MSTS-BOLEL1-Mode and 1.58% for MSTS-BOLEL2-
Mode. In synthetic datasets, the highest gain reported was with
BOLEL1 in the Mixed dataset, with a gain of 0.50%.

Even though Native BOLEL1 has better results than Native
BOLEL2, in the datasets Nomao, Elec and Covtype, there was
a loss in accuracy. We suspect this occurred because of the
points discussed in section IV. However, MSTS BOLEL1 had
better results than MSTS BOLEL2 in this datasets, overcoming
this problem.

The only case MSTS leveraged SRP results was with the
fixed threshold in real-world datasets, which was a small gain
in the ranking. We suspect that because SRP is less stable and
its trees grow faster, as discussed in [30], this probably causes
abrupt changes in mfrp distribution, being difficult to draw a
separation between learners that will have a positive impact
on voting. The worst-reported average loss in accuracy was
12.11% for MSTS-SRP-Mode.

To evaluate datasets that have an imbalanced class distribu-
tion, usually the most used metric in the streaming literature
is kappa statistic [31]. In the repository, we show the results
for kappa. As in accuracy, MSTS BOLEL1 and MSTS ARF
had better results than Native SRP. However, MSTS BOLEL1

Fixed and Mode presented better results than MSTS-ARF.
Surprisingly, MSTS BOLEL2 Fixed and Mode presented better
kappa results than Native SRP. In the imbalanced datasets



TABLE I
PREQUENTIAL ACCURACY OF NATIVE ALGORITHMS AND ALGORITHMS WITH MSTS WITH FIXED THRESHOLD

ARF SRP BOLEL1 BOLEL2 MSTS-ARF MSTS-SRP MSTS-BOLEL1 MSTS-BOLEL2

Native Native Native Native Fixed Fixed Fixed Fixed
Outdoor 64.325 68.475 69.800 65.125 67.125 72.650 73.575 70.925
Nomao 97.229 97.383 95.932 96.022 97.290 97.389 97.203 97.267

Elec 90.643 89.859 91.997 92.086 90.869 90.727 92.496 91.741
GMSC 93.585 93.509 92.750 92.700 93.584 93.507 93.083 93.123
Rialto 72.119 80.010 64.385 59.320 77.570 74.625 69.728 65.179

Airlines 66.720 68.565 61.211 61.169 66.750 62.686 61.427 61.297
Covtype 94.713 95.350 93.785 94.194 94.826 95.010 95.104 94.751

Poker Hand 88.780 89.798 95.046 94.230 89.823 91.487 94.223 92.115
KDD99 99.973 99.981 99.633 99.407 99.975 99.984 99.991 99.991

AGR 85.016 92.463 82.147 81.558 85.035 65.033 82.583 81.842
SEA 88.218 85.151 86.878 85.952 88.216 83.307 87.063 86.463

Mixed balanced 99.175 91.196 98.955 98.864 99.180 79.827 99.455 99.435
Mixed imbalanced 99.182 91.053 98.948 98.867 99.189 81.133 99.454 99.425

RBF 76.237 76.344 61.216 52.666 76.522 60.826 61.407 52.660
Avg. RANKALL 9.071 8.000 10.929 12.429 7.429 9.357 5.857 9.143

Avg. RANKREAL 10.889 7.556 11.889 12.556 8.889 7.222 6.667 9.333
Avg. RANKSY NT 5.800 8.800 9.200 12.200 4.800 13.200 4.400 8.800

Bold values indicate the best results per data set

TABLE II
PREQUENTIAL ACCURACY OF ALGORITHMS WITH MSTS WITH {MEAN, MODE}

MSTS-ARF MSTS-SRP MSTS-BOLEL1 MSTS-BOLEL2 MSTS-ARF MSTS-SRP MSTS-BOLEL1 MSTS-BOLEL2

Mean Mean Mean Mean Mode Mode Mode Mode
Outdoor 65.850 72.375 74.050 71.600 66.025 72.800 76.075 73.450
Nomao 97.371 97.397 97.365 97.400 97.441 97.421 97.435 97.429

Elec 91.106 90.512 92.205 91.241 92.300 74.481 92.221 91.448
GMSC 93.586 93.508 93.157 93.217 93.593 93.391 93.093 93.152
Rialto 76.111 74.196 69.542 64.834 77.604 74.635 70.308 65.803

Airlines 66.786 61.896 61.403 61.276 66.797 57.657 61.454 61.338
Covtype 94.927 94.914 94.505 94.099 95.719 74.607 95.283 95.170

Poker Hand 90.020 90.856 93.618 90.982 91.062 69.112 93.126 90.712
KDD99 99.976 99.985 99.991 99.991 99.981 99.983 99.989 99.990

AGR 85.090 64.980 82.501 81.716 85.062 59.601 82.535 81.780
SEA 88.228 82.226 86.832 86.632 88.225 81.356 86.819 86.560

Mixed balanced 99.175 79.147 99.473 99.448 99.140 75.233 99.464 99.434
Mixed imbalanced 99.179 80.540 99.465 99.431 99.140 76.088 99.448 99.418

RBF 76.528 57.197 61.265 52.317 76.395 43.146 61.219 52.330
Avg. RANKALL 6.786 10.214 6.357 9.214 4.857 12.500 5.571 8.286

Avg. RANKREAL 8.111 8.000 7.222 9.444 4.444 10.556 5.556 7.667
Avg. RANKSY NT 4.400 14.200 4.800 8.800 5.600 16.000 5.600 9.400

Bold values indicate the best results per data set

Fig. 1. Nemenyi test on ARF accuracy with 95% confidence. Fig. 2. Nemenyi test on SRP accuracy with 95% confidence.

Fig. 3. Nemenyi test on BOLEL1 accuracy with 95% confidence. Fig. 4. Nemenyi test on BOLEL2 accuracy with 95% confidence.



Fig. 5. Nemenyi test on accuracy with 95% confidence.

Fig. 6. Nemenyi test on kappa with 95% confidence.

Fig. 7. Average CPU Time comparison

Nomoa and GMSC, MSTS improved the kappa of the al-
gorithms, but not for GSMC in MSTS BOLEL1. The best-
reported average gain in comparison with native algorithms
for all datasets was 1.317% for MSTS-ARF-Mode, 1.218%
for MSTS BOLEL1-Fixed and 1.036% for MSTS BOLEL2-
Fixed.

Figure 7 compares all algorithms in terms of processing
time. In the repository, we report all the results for CPU-Time
and RAM-Hours. We calculate overhead with Equation 5.

100×
(
MMSTS

MNative
− 1

)
% (5)

TABLE III
AVERAGE OVERHEAD (%) CPU-TIME

ARF SRP BOLEL1 BOLEL2

0,843 3,514 0,748 2,612

TABLE IV
AVERAGE OVERHEAD (%) RAM-HOURS

ARF SRP BOLEL1 BOLEL2

1,93 2,83 0,911 3,09

Tables III and IV report the mean overhead of MSTS
compared to the native algorithms. Memory usage and CPU-
Time overheads were small for all algorithms. The CPU-Time
overhead of BOLEL1 compared to BOLEL2 was 35.33%.
However, BOLEL1 still has CPU-Time lower than ARF.

Figures 1-4 show the Nemenyi test with all average rankings
per algorithm in a number line, and the Critical Difference
(CD), with a 95% confidence level for all tests, was approxi-
mately 1.254. This means that each pair of algorithms with a
ranking difference higher than 1.254 are statistically different.
MSTS ARF and BOLEL1 are statistically different to their
native counterparts, while MSTS SRP and BOLEL2 are not,
even if MSTS BOLEL2 reported better results compared to
Native BOLEL2. In Figures 5 and 6, the Nemenyi test is
presented with all the 16 algorithms versions together for
accuracy and kappa, respectively, with a CD = 6.165. Not so
many algorithms are statistically different with all compared
together, but it is evident that BOLEL2 is statistically different
from the algorithms with the best results reported for both



accuracy and kappa.

VI. CONCLUSIONS

In this paper, we proposed MSTS, a DCS method for data
stream mining based on the performance of learners in the
most recent instances. We also proposed a modification to
BOLE that gets its results potentiated with DCS. The selection
of classifiers strategies shown to leverage BOLE and ARF
results, surpassing Native SRP results, with a low overhead of
processing time and memory usage.

In future works we plan on creating a general method for
any ensemble with any number of base learners, and test
our method with different base learners, like Naive Bayes,
Hoeffding Adaptive Tree [32] and Extremely Fast Decision
Tree [33]. We also plan to analyze the SRP loss in accuracy,
based on the points reported in [30].
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