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Abstract. Facial expression recognition is pivotal in machine learning,
facilitating various applications. However, convolutional neural networks
(CNNs) are often plagued by catastrophic forgetting, impeding their
adaptability. The proposed method, emotion-centered generative replay
(ECgr), tackles this challenge by integrating synthetic images from gen-
erative adversarial networks. Moreover, ECgr incorporates a quality as-
surance algorithm to ensure the fidelity of generated images. This dual
approach enables CNNs to retain past knowledge while learning new
tasks, enhancing their performance in emotion recognition. The exper-
imental results on four diverse facial expression datasets demonstrate
that incorporating images generated by our pseudo-rehearsal method
enhances training on the targeted dataset and the source dataset while
making the CNN retain previously learned knowledge.

Keywords: Facial expression recognition · Convolutional Neural Net-
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1 Introduction

Emotions are essential in human interaction and comprehension. In such a
context, facial expressions play an important role [15]. Thus, facial expression
recognition (FER) is the functionality of numerous machine learning applica-
tions, including emotion-aware interfaces, personalized recommender systems,
and human-robot interaction. One way to identify these emotions in complex sys-
tems is via convolutional neural networks (CNNs). These networks have achieved
remarkable success in computer vision tasks such as image classification, object
detection, and facial expression recognition. However, a significant limitation of
CNNs is their susceptibility to catastrophic forgetting. When sequentially trained
on different tasks or datasets, CNNs often struggle to retain previously learned
information, which leads to degraded performance on previously mastered tasks.
This phenomenon impairs the practical application of CNNs in dynamic envi-
ronments where models must continuously adapt to new data while retaining
accuracy in the previous scenarios.
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Evaluating the catastrophic forgetting problem in FER - a complex learn-
ing scenario - allows us to observe the proposed method’s ability to deal with
datasets composed of diverse emotional expressions, unlike more straightforward
tasks with more limited patterns. Moreover, such an evaluation sheds light on
the model’s adeptness at maintaining previously learned emotional recognition
performance while assimilating the changes of a new domain, showing faces col-
lected with other acquisition protocols, and representing people with different
characteristics and cultures.

Catastrophic forgetting arises due to CNN’s optimization process, which
tends to adjust the model’s parameters to fit the current task, often overshad-
owing previously acquired representations. Researchers have proposed numerous
approaches to mitigate catastrophic forgetting, including regularization tech-
niques, dynamic neural network architecture, and rehearsal-based methods [7,
8, 12, 13, 16]. Furthermore, several literature reviews have been published in this
research field and in continual learning, offering comprehensive insights into the
state-of-the-art methodologies, best practices, and emerging trends in mitigat-
ing catastrophic forgetting and advancing continual learning algorithms [6, 11,
14]. While these state-of-the-art methodologies have demonstrated promising re-
sults in specific scenarios, they have limitations such as increased computational
complexity or limited capacity to effectively retain information from past tasks,
especially in facial expression recognition scenarios.

In this paper, we propose a novel approach to overcome the limitations of
existing methods and effectively address catastrophic forgetting in CNNs when
applied to facial expression recognition. Our approach capitalizes on generative
adversarial networks (GANs) capabilities to generate synthetic samples that re-
semble the original training data. Incorporating these synthetic samples during
training enables the CNN to re-learn and retain knowledge from previous tasks,
thereby mitigating catastrophic forgetting. To achieve this, we generated syn-
thetic images of each emotion (class) present in the datasets, aiming to better
capture the intrinsic characteristics of each facial expression associated with hu-
man emotion. We refer to this method as emotion-centered generative replay
(ECgr). Moreover, we introduce a quality assurance (QA) algorithm as a crucial
component of our approach. The QA algorithm assesses the generated synthetic
samples based on the CNN’s original classification accuracy. Only high-quality
synthetic samples, which the original CNN can accurately classify, are retained
for training. This filtering step ensures that only superior generated samples are
utilized, thus augmenting the performance of the proposed method. In addition,
we weigh the importance of the synthetic images, considering the CNN output
score as an image quality assignment. Such a weight penalizes images that have
been assigned a low confidence value by the CNN, which might positively influ-
ence the training convergence, as these images may be considered detrimental
to the adaptation to the new dataset.

Our hypothesis centers around the effectiveness of employing a pseudo-re-
hearsal method: H1) the utilization of a pseudo-rehearsal method, particularly
our emotion-centered generative replay, offers a potential solution for memory
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decay in CNNs; H2) the fusion of our emotion-centered generative replay and
the proposed QA algorithm offers a promising strategy to counteract memory
decay within neural networks; and H3) the combination of emotion-centered
generative replay, QA, and a weighted loss function is hypothesized to further
strengthen memory retention and performance in neural networks, potentially
surpassing the benefits of either ECgr or QA alone. To assess the proposed
method’s efficiency and validate our hypothesis, we undertook facial expression
recognition experiments across various emotion datasets and employed diverse
training methodologies.

The contribution of this work is three-fold: i) a new pseudo-rehearsal method
focused on the emotions to mitigate catastrophic forgetting when learning facial
emotion recognition; ii) a loss function considering a penalization schema for low-
quality synthetic images generated in the pseudo-rehearsal strategy; iii) a robust
experimental protocol considering well-known FER datasets and a pipeline of
experiments to discuss the contributions of the proposed emotion-centered gen-
erative replay in mitigating catastrophic forgetting when compared to a regular
fine-tuning process or the possibility of joining datasets.

The remainder of this paper is structured as follows: Section 2 reviews related
work on catastrophic forgetting and existing methods for its mitigation. Section 3
presents the proposed emotion-centered generative replay approach and outlines
the architecture of the QA algorithm. Section 4 describes the experimental setup
and presents the results of our comprehensive evaluations. Section 5 discusses
the implications of our findings, and Section 6 concludes the paper, outlining
potential directions for future research.

2 Related Works

Catastrophic forgetting has spurred numerous research works to minimize its
effects. In this section, we explore prominent algorithms and insights inspired
by neuropsychology, all aimed at addressing forgetting and improving memory
retention within neural networks.

Learning without forgetting (LWF) stands out by employing knowledge dis-
tillation [8]. This technique transfers distilled knowledge from a model trained on
prior tasks to a new model, thereby allowing the assimilation of new information
while safeguarding the retention of past information. This intelligent utilization
of previous knowledge effectively counteracts the plague of forgetting and am-
plifies the network’s overall performance. Another regularization method, elastic
weight consolidation (EWC) [7], introduces a nuanced regularization term in the
scenario. This term identifies and assigns significance to pivotal network param-
eters linked to previous tasks, penalizing alterations to these parameters during
subsequent training phases. By preserving these key parameters diligently, EWC
balances between accommodating novel tasks and upholding the wisdom derived
from past experiences.

Synaptic intelligence (SI) [16] offers an innovative perspective that stems
from evaluating past task performance and assigns weight to synaptic connec-
tions based on their influence. The more a synapse contributes, the higher its
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importance; in contrast, less influential synapses are assigned lower importance.
By preserving these critical connections, SI bridges the gap between old and new
information, thus mitigating forgetting while embracing novelty.

Deep generative replay (DGR) [12] utilizes generative models to create sim-
ulated instances from prior tasks during training. This approach effectively en-
riches the current task’s dataset. The augmented instances, fused with real-time
data, offer the network a diverse and comprehensive pool of examples. With past
knowledge seamlessly integrated, DGR effectively combats the erosion of previ-
ously gained insights, presenting itself as a powerful tool for memory retention.

Beyond these algorithms, insights obtained from neuropsychological research
paint a broader picture. Investigations into context-dependent learning have illu-
minated the crucial role of training and testing contexts in determining network
performance. Thus, using contextual cues, algorithms can be designed to exploit
the training and testing context better, thereby enhancing memory retention
while countering the forgetting phenomenon [11].

In light of these contributions, it is crucial to contextualize our work within
the broader realm of the current state-of-the-art. The proposed methodology
harmonizes the concepts of emotion-centered generative replay and QA. With
CNNs as the focal point, our approach aims to prevent catastrophic forgetting
in facial expression recognition, a domain where precise emotion identification
heavily depends on image quality.

3 Proposed Method

In this section, we describe the methodology employed in our study to address
the challenges of catastrophic forgetting in facial emotion recognition tasks. Our
approach combines emotion-centered generative replay using a Wasserstein gen-
erative adversarial network with gradient penalty (WGAN-GP) and a QA algo-
rithm. Fig. 1 presents a general overview of the proposed method.

The use of WGAN-GPs is attributed to the stable learning power of these
networks, a factor crucial when dealing with catastrophic forgetting. After all,
attempting to address this issue through training and employing a generative
method may lead to catastrophic forgetting in the generative networks. WGAN-
GPs [5] implement a penalty on the gradient norm during training and opti-
mization of the WGAN [2], thereby ensuring more stable training and yielding
higher-quality generated images.

We have formalized our methodology using algorithmic representations to
provide a more concrete understanding of the theoretical concepts presented. In
Subsection 3.2, we provide detailed algorithms replicating our approach’s offline
preparation and training stages. These algorithms encapsulate the step-by-step
processes of generating synthetic images and performing continuous retraining.

3.1 Emotion-Centered Generative Replay

We initiate by training a set of WGAN-GPs, one for each of the seven emotion
classes present in the ‘source’ dataset - fear, anger, happiness, sadness, disgust,
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Fig. 1: An overview of the proposed method, separated into two key components.
At the top, the emotion-centered WGAN-GP with CNN QA is depicted. This
component involves training a WGAN-GP for each class in the source dataset
to generate synthetic data resembling that class. At the bottom, the fine-tuning
strategy is illustrated, where our synthetic dataset is replayed alongside the
target dataset.

surprise, and neutral. Using these trained WGAN-GPs, we generate augmented
datasets for each class. These generated images capture the intricate details of
respective emotions, diversifying training data towards better generalization.

The WGAN-GP is built by two different networks: discriminator and gener-
ator. The discriminator network is crucial for distinguishing between real and
synthetic images. It consists of several layers, including convolutional layers with
leaky rectified linear united (ReLU) activation functions. These layers help the
discriminator extract relevant features from input images. Additionally, dropout
layers are applied to prevent overfitting. This network contains approximately
4.3 million trainable parameters.

The generator network, detailed in Table 1, creates synthetic images from
random noise. It uses dense, batch normalization, and convolutional layers with
leaky ReLU activations to upscale and refine feature maps. The output matches
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the desired image size. With around 1.5 million parameters, this architecture
produces images to challenge the discriminator.

Table 1: WGAN-GP generator and discriminator architecture.
Generator Output Shape Discriminator Output Shape
Input Layer (128) Input Layer (48, 48, 1)

Dense (9216) Zero Padding 2D (52, 52, 1)
Batch Normalization (9216) Convolutional 2D (26, 26, 64)

Leaky ReLU (9216) Leaky ReLU (26, 26, 64)
Reshape (6, 6, 256) Convolutional 2D (13, 13, 128)

Up Sampling 2D (12, 12, 256) Leaky ReLU (13, 13, 128)
Convolutional 2D (12, 12, 128) Dropout (13, 13, 128)

Batch Normalization (12, 12, 128) Convolutional 2D (7, 7, 256)
Leaky ReLU (12, 12, 128) Leaky ReLU (7, 7, 256)

Up Sampling 2D (24, 24, 128) Dropout (7, 7, 256)
Convolutional 2D (24, 24, 64) Convolutional 2D (4, 4, 512)

Batch Normalization (24, 24, 64) Leaky ReLU (4, 4, 512)
Leaky ReLU (24, 24, 64) Flatten (8192)

Up Sampling 2D (48, 48, 64) Dropout (8192)
Convolutional 2D (48, 48, 1)

Batch Normalization (48, 48, 1)
Activation (48, 48, 1)
Total params: 1,586,500 Total params: 4,303,360

We employ our QA algorithm to ensure the quality of the generated images.
The QA algorithm filters out low-quality or incorrect images generated by the
WGAN-GP, retaining high-quality images that the original classifier correctly
classifies. The QA process is performed using the CNN trained on the source
dataset. Given an empirically defined threshold, the images correctly classified
by the network are used for future retraining, and the misclassified images are
discarded. The QA process enhances the reliability of the emotion-centered gen-
erative replay, preventing the classifier from being influenced by poor-quality or
misleading synthetic images. These images are then integrated into an improved
dataset, which merges the synthetic images with the initial source data.

During retraining, the new dataset and the target dataset are employed.
This unified dataset facilitates CNN training, where knowledge from the original
emotion classes is combined with the new target emotions, minimizing forgetting.

3.2 General Pipeline

To address the challenge of catastrophic forgetting, our proposed approach in-
volves a two-stage process: offline preparation and a training phase.

Offline preparation stage. Initialization occurs as depicted in Algorithm 1,
where a set of datasets represented by T is defined, encompassing datasets
A,B,C, and D. Each dataset dt within T is traversed through an iterative
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Algorithm 1 Offline stage
1: T ← A,B,C,D
2: T ′ ← ∅
3: for each dataset dt in T do
4: Gdt ← ∅
5: Train classifier Cdt on dataset dt
6: for each class c in dataset dt do
7: Train WGANGPc on class c
8: Add WGANGPc to ensemble Gdt

9: Generate SIc using WGANGPc
10: Pass SIc through Cdt to generate dataset dt

qa
c

11: Add dt
qa
c to dataset d′t

12: end for
13: Add d′t to T ′

14: end for
15: return collection of synthetic datasets T ′

process. For each specific dataset dt, a classifier, denoted as Cdt , is trained using
that particular dataset.

Our proposal then iterates over each class c in dataset dt. In this context,
a WGAN-GP is trained per class, denoted WGANGPc, and these are subsequently
combined to form an ensemble, denoted as Gdt . Through these WGANGPc, syn-
thetic images (SIc) are generated to reflect the characteristics of each class.
Continuing the process, these synthetic images are input to the classifier Cdt

,
thus resulting in a new dataset, dtqac , consisting of the images that are correctly
classified by Cdt

. These refined synthetic images are combined into a new dataset
d′t. This procedure is executed for each dataset dt, and all the resulting datasets
d′t are unified into a collection labeled T ′, encapsulating the sets of synthetic
datasets corresponding to each original dataset dt in T .

The time complexity of Algorithm 1 is O(n · (f(p) + m · g(p))), where n is
the number of datasets, m is the number of classes per dataset, and p is the
number of images per class. The term f(p) represents the time complexity for
training a classifier on p images, while g(p) denotes the complexity for training
a WGAN-GP on p images.

Continual learning stage. Our approach began with individual training for
ECgr before merging ECgr and QA. For a comparative evaluation, we utilize joint
training and fine-tuning methods. Joint training simultaneously incorporates the
source and target data while fine-tuning adapts the CNN to new data, training
only the fully connected layers.

As shown in Algorithm 2, we define a set of subsequent datasets, indicated
by T , which comprises datasets B, C, and D. Then, we iterate over each combi-
nation of the original dataset and subsequent dataset, referred to as dt and d′t
respectively, from set T and its counterpart T ′. For each dataset combination,
we create a unified dataset, dut , by merging dt and d′t. Subsequently, we train a
classifier, Cdu

t
on the unified dataset dut .
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Algorithm 2 Continual learning stage
1: T ← B,C,D
2: CT ← ∅
3: for each dataset dt, d′t in T , T ′ do
4: dut ← dt + d′t
5: Train classifier Cdut

on unified dataset dut
6: Add trained Cdut

to CT

7: end for
8: return ensemble CT

For Algorithm 2, the time complexity is O(n·(r(m)+f(m))). Here, n denotes
the number of dataset pairs processed from sets T and T ′, while m represents
the size of individual datasets dt and d′t. The term r(m) stands for the overhead
for merging datasets dt and d′t, whereas f(m) represents the computational cost
of training a classifier on a dataset of size m.

The CNN used in our experiments, detailed in Table 2, begins with 2D con-
volutional layers (64 filters each) and batch normalization. It includes additional
convolutional layers, max-pooling for downsampling, and further batch normal-
ization for higher-level feature extraction. The feature maps are flattened and
passed through fully connected layers with dropout to prevent overfitting. The
final layer uses softmax activation to output class probabilities. Overall, this
CNN architecture comprises approximately 19.3 million parameters.

Table 2: CNN network architecture.
Layer (type) Output Shape Params
Convolution 2D (47, 47, 64) 320

Batch Normalization (47, 47, 64) 256
Convolution 2D (46, 46, 64) 16448

Batch Normalization (46, 46, 64) 256
Max Pooling 2D (23, 23, 64) 0
Convolution 2D (21, 21, 128) 73856

Batch Normalization (21, 21, 128) 512
Convolution 2D (19, 19, 128) 147584

Batch Normalization (19, 19, 128) 512
Convolution 2D (17, 17, 128) 147584

Batch Normalization (17, 17, 128) 512
Max Pooling 2D (8, 8, 128) 0

Flatten (8192) 0
Dense (2048) 16779264

Dropout (2048) 0
Dense (1024) 2098176

Dropout (1024) 0
Dense (Softmax) (7) 7175

Total params: 19,272,455



Alleviating Catastrophic Forgetting in FER with Emotion-Centered Models 9

The training aims to optimize the Eq. (1), where a weight w is applied to
each prediction. This weight is determined by the CNN’s confidence percentage
when predicting for all ypred.

Li(y
(i)
true,y

(i)
pred) = −

C∑
j=1

wjy
(i)
true j log(y

(i)
pred j) (1)

In summary, our general pipeline encompasses an offline preparation phase
involving training WGAN-GPs and QA-based synthetic image generation. In the
training stage, synthetic and original datasets are combined, and the continual
retraining approach adapts the classifier to multiple datasets while incorporating
different strategies.

4 Experiments

To evaluate the performance of our methodology, we utilize several datasets that
contain human facial images displaying various emotions. The datasets consid-
ered in our study include TFEID, MUG, CK+, and JAFFE. These datasets
provide diverse emotional contexts, allowing us to assess our approach’s robust-
ness and generalization capabilities. All datasets have the following classes: fear,
anger, happiness, sadness, disgust, surprise, and neutral.

The Multimodal Understanding Group (MUG) [1] dataset consists of ap-
proximately 1462 facial images, each annotated with the corresponding facial
expression labels. The Japanese Female Facial Expression (JAFFE) [10] dataset,
despite its relatively small size, containing approximately 213 facial images, is
valuable for evaluating and comparing facial expression recognition models. The
Taiwanese Facial Expression Image Database (TFEID) [3] provides a suitable
testbed for evaluating emotion recognition algorithms, with 1128 samples. Lastly,
the extended Cohn-Kanade dataset (CK+) [9] is commonly used for facial ex-
pression recognition research. It includes a substantial number of facial images,
compiled into 123 videos of different subjects, totaling approximately 593 videos,
with 327 labeled videos covering various emotional expressions.

4.1 Results

This section offers an in-depth analysis of the outcomes achieved by employing
different retraining strategies, each suited to minimize memory degradation and
maximize knowledge retention.

On Quality of Synthetic Images. In this subsection, we present a compre-
hensive discussion of the qualitative aspects of the synthetic data. As shown in
Fig. 2, the left side features an image from the original dataset as a reference for
the dataset’s inherent visual characteristics. On the right side, seven columns dis-
play synthetic images generated for each class within the dataset. These columns
show the diversity and fidelity of the synthetic samples produced by our ECgr
approach. Fig. 3 shows examples of images that were rejected during the QA
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Fig. 2: Sample results for different classes from the MUG, JAFFE, and TFEID
synthetic datasets generated by WGAN-GP. The first column (in green) displays
the original samples from the MUG, TFEID, and JAFFE datasets (from top to
bottom, respectively). In contrast, the second-to-last column (in orange) features
the corresponding synthetic images for each dataset.

process. These rejected images are of low quality and do not convey emotion,
resulting in incorrect classification by the CNN.

On Continual Learning. In this section, we discuss the main results observed
from the tests conducted with facial expression datasets, utilizing the combina-
tion of different methods outlined in this study.

Initially, we trained a CNN on the MUG dataset. We then adapted this CNN
for continuous learning across other datasets. Each training process was repli-
cated 20 times. For methods involving image generation, the synthetic datasets
differ across various replications of CNN adaptation.

Fig. 3: Some rejected samples identified by the QA algorithm from the synthetic
datasets of MUG, JAFFE, and TFEID.
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In Tables 3, 4 and 5, the columns baseline, joint, and fine-tune represent, re-
spectively: testing datasets with the CNN trained on the source dataset; adapting
the CNN trained on the source plus target dataset; adapting the CNN trained
on the source dataset using only the target dataset. Additionally, the ECgr and
QA methods were evaluated separately (ECgr) and then combined (ECgr+QA)
to determine the impact of using synthetic image filtering in continuous train-
ing. Furthermore, this scenario assessed whether using weights (ECgr+wQA) on
synthetic images has any effect compared to training without this technique.

Table 3: Results on MUG’s model fine-tuned to JAFFE dataset in terms of ECgr,
QA, weighted QA, and the combination of ECgr with QA and wQA, alongside
with fine-tune, joint, and current for a direct comparison.

Current Joining Fine Proposed
model datasets Tuning ECgr ECgr+QA ECgr+wQA

Source dataset
MUG 0.98±0.00 1.00±0.00 0.75±0.03 0.88±0.04 0.93±0.02 0.94±0.03

Target dataset
JAFFE 0.28±0.00 0.74±0.06 0.77±0.03 0.78±0.03 0.78±0.05 0.79±0.04
Mean 0.63 0.87 0.76 0.83 0.85 0.86

Table 3 shows the results when adapting the CNN trained on the MUG
dataset (source) to the JAFFE dataset (target). Considering the baseline, joint,
and fine-tune methods, we can assume that the upper limit is the joint method,
which represents the ideal case where all datasets are available for training,
and the lower limit is the fine-tune method, in which the source dataset is no
longer available. The combined method ECgr+wQA yielded the best results in
this initial adaptation involving only one dataset, with a result very close to
joint training. Tables 4 and 5, show a change in this scenario, as more datasets
are introduced in continuous training, the ECgr+QA method tends to outper-
form. Regarding the result obtained in the retraining for the JAFFE dataset,
it is possible to justify this outcome, where the combined method (ECgr+QA)
came close to the joint method, as the adaptation can still be considered trivial
since only one dataset is being adapted. Thus, the complexity for the CNN to
assimilate synthetic images needs to be higher.

Table 4 shows, when adapting the CNN trained on MUG and JAFFE to the
new dataset TFEID, that the best result lies between ECgr+QA and ECgr+wQA.
Interestingly, in all results, the generative method - combined with QA or not
- performed equally or better on the target dataset when compared to joint
training. This reveals that synthetic images not only aid the CNN in recalling
something it has already seen but also assist in training for new data, reinforcing
knowledge when adapting to the same context, in this case, emotion recognition.

In Table 5, when adapting the CNN trained on MUG, JAFFE, and TFEID
to CK+, we can observe a behavior similar to that observed when adapting
to TFEID, where the best result lies between the ECgr+QA and ECgr+wQA
methods. However, at this point, it becomes more apparent that using a weight
for synthetic images brings an intrinsic problem to the training of the CNN
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being used for the filtering method. This CNN can carry certain behaviors into
subsequent training steps, where errors from certain classes may compromise the
entire training when using the confidence percentage.

We can better understand the results in the MUG dataset from the continu-
ous training of all datasets with Fig. 4. It is noticeable that the best method for
the MUG dataset is ECgr+QA. We can also observe the poor performance of
the fine-tuning method in the context of continuous training, where the knowl-
edge was significantly forgotten compared to methods that attempt to mitigate
this behavior. While fine-tuning initially shows promise in adapting the model to
new tasks or domains, its performance deteriorates over time as knowledge reten-
tion becomes increasingly challenging. Additionally, memory forgetting becomes
trivial when all datasets are always available, as datasets can be combined for
retraining. However, one must consider the high computational cost and storage
requirements of joint training.

Given that synthetic images for each class are generated independently in our
method, it is essential to examine class-specific memory loss. Fig. 5 compares
the fine-tune and ECgr+QA methods, revealing subpar performance (F1 < 0.6)
for the anger and disgust classes. During the final retraining step, the ECgr+QA
method also experiences performance deterioration for the fear class. This un-

Table 4: Results on MUG plus JAFFE’s model fine-tuned to TFEID dataset in
terms of ECgr, QA, weighted QA and the combination of ECgr with QA and
wQA, alongside with fine-tune, joint and current for a direct comparison.

Current Joining Fine Proposed
model datasets Tuning ECgr ECgr+QA ECgr+wQA

Source datasets
MUG 0.75±0.03 1.00±0.00 0.71±0.01 0.84±0.06 0.87±0.04 0.78±0.04

JAFFE 0.77±0.03 0.94±0.03 0.76±0.02 0.64±0.07 0.62±0.07 0.69±0.04
Mean 0.75 0.97 0.73 0.74 0.74 0.73

Target dataset
TFEID 0.22±0.00 0.79±0.05 0.78±0.03 0.83±0.04 0.84±0.04 0.87±0.04

Updated mean 0.58 0.91 0.75 0.77 0.78 0.78

Table 5: Results on MUG plus JAFFE plus TFEID’s model fine-tuned to CK+
dataset in terms of ECgr, QA, weighted QA and the combination of ECgr with
QA and wQA, alongside with fine-tune, joint and current for a direct comparison.

Current Joining Fine Proposed
model datasets Tuning ECgr ECgr+QA ECgr+wQA

Source datasets
MUG 0.71±0.01 1.00±0.00 0.63±0.05 0.85±0.04 0.87±0.03 0.73±0.04

JAFFE 0.76±0.02 0.99±0.01 0.57±0.08 0.61±0.05 0.55±0.04 0.59±0.05
TFEID 0.78±0.03 1.00±0.00 0.49±0.06 0.62±0.09 0.76±0.09 0.70±0.07
Mean 0.73 0.95 0.56 0.69 0.72 0.67

Target dataset
CK+ 0.53±0.00 0.81±0.03 0.79±0.03 0.83±0.03 0.82±0.03 0.81±0.02

Updated mean 0.68 0.99 0.62 0.72 0.75 0.71
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Fig. 4: Accuracy results on the MUG dataset, showcasing the continuous adap-
tation of a trained CNN across JAFFE, TFEID and CK+ datasets relative to
the baseline accuracy.

derscores the difficulty of training these classes, as even minor facial changes can
be misinterpreted as another emotional state.

We have also conducted experiments on a different domain using the MNIST
dataset, and the results are presented in Appendix A.

5 Discussion

Firstly, the results support our hypothesis regarding using pseudo-rehearsal
methods, specifically emotion-centered generative replay, to minimize memory
decay. Our strategy demonstrated remarkable efficacy in alleviating catastrophic
forgetting, consistently outperforming the fine-tuning methods across various
tasks. The generation of synthetic data resembling past task patterns through
WGAN-GPs proved positive in enabling the network to retain knowledge with-
out using original data. This substantiates our anticipation that pseudo-rehearsal
techniques, particularly our emotion-centered generative replay, are essential in
counteracting memory decay.

Furthermore, synthesizing our WGAN-GP class-driven generative and QA
methods substantiates our second hypothesis. Introducing a QA mechanism dur-
ing replay significantly improved the quality of synthetic data, further augment-
ing the approach’s effectiveness. The third hypothesis, in which applying a weight
to synthetic images would benefit continuous training, can only be observed as
positive in the retraining for the first dataset - from MUG to JAFFE. We ob-
served that this technique was ineffective for more datasets after JAFFE. This
may be directly related to the errors of the network that assigns these weights
to the synthetic images—meaning the network may be making errors with high
confidence, negatively affecting the synthetic images, which in turn are not fully
considered in the retraining, leading the CNN to not remember these data.
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Fig. 5: Comparison of F1 scores by class on the MUG dataset between fine-tune
and ECgr+QA, showcasing the continuous adaptation across JAFFE, TFEID,
and CK+ datasets.

6 Conclusion
In this study, we presented a comprehensive investigation into the challenge of
catastrophic forgetting in CNNs within the context of facial expression recogni-
tion, proposing a novel approach to mitigate its effects. We employed a pseudo-
rehearsal method, specifically our emotion-centered generative replay (ECgr)
with WGAN-GPs, to generate synthetic images for each dataset class and com-
bined this with a filtering method to exclude images that could hinder retraining.

Across various tasks, ECgr consistently demonstrated superior performance
compared to baseline and fine-tuned methods. Utilizing WGAN-GPs to synthe-
size task-specific data and our QA algorithm resulted in substantial knowledge
retention. This confirms the potential of pseudo-rehearsal methods to effectively
retrain CNNs without revisiting original datasets, offering a promising strategy
for addressing memory decay, particularly in challenging scenarios like facial
expression recognition.

Despite promising results with pseudo-rehearsal, its effectiveness may vary
across network architectures, datasets, and tasks. Additionally, WGAN-GP-
based data generation can be computationally expensive, limiting real-time use.
These aspects highlight opportunities for future research, such as improved
weight assignment algorithms and exploration of regularization techniques’ syn-
ergy with pseudo-rehearsal approaches. Also, enhancements can be made to the
quality of images generated by the WGAN-GP and in the architecture of clas-
sifiers, for example, using transformer networks. While the primary concern re-
mains mitigating catastrophic forgetting, there is significant potential to improve
results by optimizing synthetic data usage.
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In an ideal scenario, combining classes from datasets such as MUG, JAFFE,
and TFEID is recommended, as it enhances diversity and representation, leading
to improved model performance. However, our method presents a viable alterna-
tive when such a combination is not feasible. This approach allows for flexibility
in data augmentation and model training, providing a potential solution for
scenarios with limited data availability or when data integration is challenging.

A Appendix

A.1 Evaluation of the MNIST Dataset

We evaluate our methodology across different domains using the MNIST dataset
[4]. We applied the ECgr method with WGAN-GPs, dividing the dataset into
class pairs (0 and 1, 2 and 3, 4 and 5, 6 and 7, 8 and 9), following the steps
in Algorithm 1 and 2. Training began with the 0 and 1 class pair as the source
dataset, with subsequent pairs used in the continual learning process. For con-
tinual learning, WGAN-GPs were trained for each digit, and the same process
of combining target datasets with synthetic datasets generated by the genera-
tive networks was followed during retraining using the ECgr, ECgr+QA, and
ECgr+wQA methods. As shown in Fig. 6, the behavior previously observed in
FER datasets also held in this domain. The ECgr+QA and ECgr+wQA methods
consistently outperformed fine-tuning in all retraining steps. Regarding the qual-
itative assessment of synthetic images, digits 4 and 5 were the most challenging
to generate, and the QA algorithm struggled the most with these digits.
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Fig. 6: Accuracy results for the MNIST (0-1) class pair subdataset, demonstrat-
ing continuous adaptation across subdatasets (2-3), (4-5), (6-7) and (8-9) relative
to the baseline accuracy.

Time complexity. Time and computational complexity were evaluated on an
Intel Core i7-8700 CPU and an NVIDIA GeForce GTX 1060 GPU. The algorithm
took approximately 5200 seconds to complete 20 replications of a single CNN
retraining on the MNIST dataset. Each batch, with 1024 images, took 3 to 5
seconds to process. Predictions for 1000 images took approximately 3 seconds.



16 I. A. Laurensi, A. S. Britto Jr., J. P. Barddal and A. L. Koerich

Acknowledgements Thanks to CAPES SticAmSud (023-STIC-13), Univision
Informática LTDA, Pontifícia Universidade Católica do Paraná (PUCPR) (grant
10844/2021) and CNPq (grant 306878/2022-4).

References

1. Aifanti, N., Papachristou, C., Delopoulos, A.: The mug facial expression database.
In: 11th Intl Works Image Anal Multim Interac Services. pp. 1–4 (2010)

2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial net-
works. In: Precup, D., Teh, Y.W. (eds.) 34th International Conference on Machine
Learning. Proc. of Machine Learning Research, vol. 70, pp. 214–223. PMLR (2017)

3. Chen, C.C., ling Cho, S., Horszowska, K., Chen, M.Y., Wu, C.C., Chen, H.C.,
Yeh, Y.Y., Cheng, C.M.: A facial expression image database and norm for Asian
population: a preliminary report. In: Farnand, S.P., Gaykema, F. (eds.) Image
Quality and System Performance VI. vol. 7242, p. 72421D. SPIE (2009)

4. Deng, L.: The mnist database of handwritten digit images for machine learning
research [best of the web]. IEEE Signal Processing Magazine 29(6), 141–142 (2012).
https://doi.org/10.1109/MSP.2012.2211477

5. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information
Processing Systems. vol. 30. Curran Associates, Inc. (2017)

6. Khetarpal, K., Riemer, M., Rish, I., Precup, D.: Towards continual reinforcement
learning: A review and perspectives. J Artif Intell Research 73, 295–333 (2022)

7. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc.
of the National Academy of Sciences 114(13), 3521–3526 (2017)

8. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans on Pattern Analysis
and Machine Intelligence 40(12), 2935–2947 (2018)

9. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The ex-
tended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-
specified expression. In: IEEE CVPR Workshops. pp. 94–101 (2010)

10. Lyons, M., Kamachi, M., Gyoba, J.: The japanese female facial expression (jaffe)
dataset. Zenodo (Apr 1998). https://doi.org/10.5281/zenodo.3451524

11. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: A review. Neural Networks 113, 54–71 (2019)

12. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., Garnett, R. (eds.) NIPS. vol. 30. Curran Associates, Inc. (2017)

13. Tannugi, D.C., Britto, A.S., Koerich, A.L.: Memory integrity of cnns for cross-
dataset facial expression recognition. In: IEEE Intl Conf on Systems, Man and
Cybernetics. pp. 3826–3831 (2019)

14. van de Ven, G.M., Tuytelaars, T., Tolias, A.S.: Three types of incremental learning.
Nature Machine Intelligence 4(12), 1185–1197 (2022)

15. Zavaschi, T.H., Britto Jr, A.S., Oliveira, L.E., Koerich, A.L.: Fusion of feature
sets and classifiers for facial expression recognition. Exp Syst App 40(2), 646–655
(2013)

16. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
Proc Machine Learning Research 70, 3987–3995 (2017)


