

1

REMINDERS

Reminders

- Today we will discuss dimensionality reduction
- Next week we will have our test!

DIMENSIONALITY REDUCTION

Dimensionality reduction

- In opposition to feature selection, dimensionality reduction techniques decrease the dimensionality of a problem by combining features
- There are different techniques to achieve this goal
- The most famous is Principal Component Analysis (PCA)

PRINCIPAL COMPONENT ANALYSIS

Variance and covariance

- Variance and covariance measure how "spread" a set of points are around their mean
- Variance is used for analyzing a single dimension
- Covariance measures how much each of the dimensions vary from the mean with respect to each other
- Covariance is measures between 2 dimensions to see if there is a relationship between them

7

Covariance

- The covariance between 2 variables is computed by:

$$
\operatorname{Cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{(n-1)}
$$

- If you have more than 2 variables, you need to compute a covariance matrix

Covariance

- The exact value is not as important as its sign
- A positive value indicates both variables increase or decrease together
- A negative value indicates that while one variable increases, the other decreases, or vice-versa
- If covariance is zero, the two variables are independent from each other

9

But what about correlation?

- Correlation allowed us to infere the same thing
- Why do we need covariance?
- Covariance is used to find relationships between variables in high-dimensional scenarios, where visualization is difficult

Principal component analysis (PCA)

- PCA is a technique used to simplify a dataset
- It is a linear transformation that chooses a new coordinate system for the dataset such that:
- the greatest variance by any projection lies on the first axis: the 1st principal component (eigenvector with the largest eigenvalue)
- the second greatest variance lies on the y axis (2nd PC), and so forth (eigenvector with the second largest eigenvalue, etc)
- PCA can be used for reducing dimensionality by eliminating later principal components

Steps to use PCA

- Normalize the data
- Calculate the covariance matrix
- Calculate the eigenvalues and eigenvectors
- Choosing principal components
- Forming a feature vector
- Forming principal components
- All but the first of these steps are covered in scikit-learn's PCA implementation

PCA Limitations

- If the data does not follow a multidimensional normal (gaussian) distribution, the principal components extracted will be distorted

Activity

- Let's run PCA on a dataset representing customers
- Each customer represents either a restaurant, a retail store, etc
- Let's analyze its principal components

T-SNE

t-Stochastic Neighbor Embedding

- Technique tailored for visualizing high-dimensional datasets
- How do we visualize data in 2D or 3D?
- Two goals:
- Distance preservation
- Neighbor preservation
- Unsupervised, but it helps uncovering interesting aspects of the data

t-SNE overall idea

- Let's say we have a 2D problem we wish to visualize in 1D

17

t-SNE

```
Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding
    Data: data set \(\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\),
    cost function parameters: perplexity Perp,
    optimization parameters: number of iterations \(T\), learning rate \(\eta\), momentum \(\alpha(t)\).
    Result: low-dimensional data representation \(\mathcal{Y}^{(T)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\).
    begin
        compute pairwise affinities \(p_{i \mid i}\) with perplexity Perp (using Equation 1)
        set \(p_{i j}=\frac{p_{j i}+p_{i j}}{2 n}\)
        sample initial solution \(\mathcal{Y}^{(0)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\) from \(\mathcal{N}\left(0,10^{-4} I\right)\)
        for \(t=l\) to \(T\) do
            compute low-dimensional affinities \(q_{i j}\) (using Equation 4)
            compute gradient \(\frac{\delta C}{\delta \gamma}\) (using Equation 5)
            set \(\mathcal{Y}^{(t)}=\mathcal{Y}^{(t-1)}+\eta \frac{\delta C}{\delta \mathcal{Y}}+\alpha(t)\left(\mathcal{Y}^{(t-1)}-\mathcal{Y}^{(t-2)}\right)\)
        end
    end
```


t-SNE

sample initial solution $\mathscr{Y}^{(0)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ from $\mathcal{N}\left(0,10^{-4} I\right)$
for $t=l$ to T do
compute low-dimensional affinities $q_{i j}$ (using Equation 4)
compute gradient $\frac{\delta C}{\delta y}$ (using Equation 5)
set $\mathcal{Y}^{(t)}=\mathcal{Y}^{(t-1)}+\eta \frac{\delta C}{\delta \mathcal{Y}}+\alpha(t)\left(\mathcal{Y}^{(t-1)}-\mathcal{Y}^{(t-2)}\right)$
end
end

19

t-SNE

t-SNE

```
Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding
Data: data set }X={\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}}
    cost function parameters: perplexity Perp,
    optimization parameters: number of iterations T, learning rate \eta, momentum \alpha(t).
    Result: low-dimensional data representation }\mp@subsup{\mathcal{V}}{}{(T)}={\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\ldots,\mp@subsup{y}{n}{}}\mathrm{ .
    begin
        compute pairwise affinities }\mp@subsup{p}{i|i}{}\mathrm{ with perplexity Perp (using Equation 1)
        set pij}=\frac{\mp@subsup{p}{ji}{}+\mp@subsup{p}{ij}{}}{2n
        sample initial solution }\mp@subsup{\mathcal{Y}}{}{(0)}={\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\ldots,\mp@subsup{y}{n}{}}\mathrm{ from }\mathcal{N}(0,1\mp@subsup{0}{}{-4}I
        for }t=l\mathrm{ to }T\mathrm{ do
            compute low-dimensional affinities }\mp@subsup{q}{ij}{}\mathrm{ (using Equation 4)
            compute gradient }\frac{\deltaC}{\delta\gamma}\mathrm{ (using Equation 5)
            set }\mp@subsup{\mathscr{Y}}{}{(t)}=\mp@subsup{\mathcal{Y}}{}{(t-1)}+\eta\frac{\deltaC}{\delta\gamma}+\alpha(t)(\mp@subsup{\mathcal{Y}}{}{(t-1)}-\mp@subsup{\mathcal{Y}}{}{(t-2)}
        end
    end
```


t-SNE

```
Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding
    Data: data set X ={x, ,\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}}\mathrm{ ,}
    cost function parameters: perplexity Perp,
    optimization parameters: number of iterations T, learning rate \eta, momentum \alpha(t).
    Result: low-dimensional data representation }\mp@subsup{\mathcal{Y}}{}{(T)}={\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\ldots,\mp@subsup{y}{n}{}}\mathrm{ .
    begin
        compute pairwise affinities }\mp@subsup{p}{jii}{}\mathrm{ with perplexity Perp (using Equation 1)
        set pij=\frac{p}{ji|}+\mp@subsup{p}{i|j}{}
        sample initial solution }\mp@subsup{\mathscr{Y}}{}{(0)}={\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\ldots,\mp@subsup{y}{n}{}}\mathrm{ from }\mathcal{N}(0,1\mp@subsup{0}{}{-4}I
        for }t=l\mathrm{ to }T\mathrm{ do
            compute low-dimensional affinities }\mp@subsup{q}{ij}{}\mathrm{ (using Equation 4)
            compute gradient }\frac{\deltaC}{\delta\gamma}\mathrm{ (using Equation 5)
            set }\mp@subsup{\mathcal{Y}}{}{(t)}=\mp@subsup{\mathcal{Y}}{}{(t-1)}+\eta\frac{\deltaC}{\deltaY}+\alpha(t)(\mp@subsup{\mathcal{Y}}{}{(t-1)}-\mp@subsup{\mathcal{Y}}{}{(t-2)}
        end
    end
```

Perplexity is the number of instances that we want to present the distances

Compute probabilities \boldsymbol{P} that $\boldsymbol{x i}$
and $x j$ are neighbors
(based on Euclidian distance in high-d space)

t-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding
Data: data set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$,
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T, learning rate η, momentum $\alpha(t)$.
Result: low-dimensional data representation $\mathcal{V}^{(T)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$.
begin
compute pairwise affinities $p_{j \mid i}$ with perplexity $\operatorname{Per} p$ (using Equation 1)
set $p_{i j}=\frac{p_{j i j}+p_{i j}}{2 n}$
sample initial solution $\mathscr{Y}^{(0)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ from $\mathcal{N}\left(0,10^{-4} I\right)$
for $t=/$ to T do
compute low-dimensional affinities $q_{i j}$ (using Equation 4)
compute gradient $\frac{\delta C}{\delta \gamma}$ (using Equation 5)
set $\mathcal{Y}^{(t)}=\mathcal{Y}^{(t-1)}+\eta \frac{\delta C}{\delta \gamma}+\alpha(t)\left(\mathcal{Y}^{(t-1)}-\mathcal{Y}^{(t-2)}\right)$ end
end
Compute probabilities \boldsymbol{Q} that $\boldsymbol{y i}$ and $\boldsymbol{y j}$ are neighbors (corresponding to $x i, x j$) (based on Euclidian distance in low-d space)

t-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding
Data: data set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$,
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T, learning rate η, momentum $\alpha(t)$.
Result: low-dimensional data representation $\mathcal{V}^{(T)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$.
begin
compute pairwise affinities $p_{j \mid i}$ with perplexity Perp (using Equation 1)
set $p_{i j}=\frac{p_{j i l}+p_{i j}}{2 n}$
sample initial solution $\mathcal{Y}^{(0)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ from $\mathcal{N}\left(0,10^{-4} I\right), ~$
for $t=l$ to T do
compute low-dimensional affinities $q_{i j}$ (using Equation 4)
compute gradient $\frac{\delta C}{\delta \gamma}$ (usihg Equation 5)
set $\mathcal{Y}^{(t)}=\mathcal{Y}^{(t-1)}+\eta \frac{\delta C}{\delta \mathcal{Y}}-\alpha(t)\left(\mathcal{Y}^{(t-1)}-\mathcal{Y}^{(t-2)}\right)$
end
end

Key assumption is that the high-d P and the
low-d Q probability distributions should be the
Key assumption is that the high-d P and the
low-d Q probability distributions should be the
 same

t-SNE

```
Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding
    Data: data set \(\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\),
    cost function parameters: perplexity Perp
    optimization parameters: number of iterations \(T\), learning rate \(\eta\), momentum \(\alpha(t)\).
    Result: low-dimensional data representation \(\mathcal{V}^{(T)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\).
    begin
        compute pairwise affinities \(p_{j \mid i}\) with perplexity \(\operatorname{Per} p\) (using Equation 1)
        set \(p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 n}\)
        sample initial solution \(\mathscr{Y}^{(0)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\) from \(\mathcal{N}\left(0,10^{-4} I\right)\)
        for \(t=1\) to \(T\) do
            compute low-dimensional affinities \(q_{i j}\) (using Equation 4)
            compute gradient \(\frac{\delta C}{\delta \gamma}\) (using Equation 5)
            set \(\left.\mathcal{Y}^{(t)}=\mathcal{Y}^{(t-1)}+\right\rceil \frac{\partial C}{\delta \gamma}+\alpha(t)\left(\mathcal{Y}^{(t-1)}-\mathcal{Y}^{(t-2)}\right)\)
        end
    end
```

Find a low-d map that minimizes the difference between the \boldsymbol{P} (high-d) and \boldsymbol{Q} (low-d) distributions
(if $x i, x j$ has high probability of being neighbors in high-d, then yi,yj should have high probability in low-d)

t-SNE

```
Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding
    Data: data set \(\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\),
    cost function parameters: perplexity Perp,
    optimization parameters: number of iterations \(T\), learning rate \(\eta\), momentum \(\alpha(t)\).
    Result: low-dimensional data representation \(\mathcal{V}^{(T)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\).
    begin
        compute pairwise affinities \(p_{j \mid i}\) with perplexity \(\operatorname{Per} p\) (using Equation 1)
        set \(p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 n}\)
        sample initial solution \(\mathcal{Y}^{(0)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\) from \(\mathcal{N}\left(0,10^{-4} I\right)\)
        for \(t=l\) to \(T\) do
            compute low-dimensional affinities \(q_{i j}\) (using Equation 4)
            compute gradient \(\frac{\delta C}{\delta \gamma}\) (using Equation 5)
            set \(\mathcal{Y}^{(t)}=\mathcal{Y}^{(t-1)}+\eta \frac{\delta C}{\delta \mathcal{Y}}+\alpha(t)\left(\mathcal{Y}^{(t-1)}-\mathcal{Y}^{(t-2)}\right)\)
        end
    end
We will minimize the difference between the high-d and low-d maps using gradient descent
```


t-SNE details

- Details on t-SNE can be found at the original paper
- https://jmlr.org/papers/volume9/vandermaaten08a/va ndermaaten08a.pdf

t-SNE

- In opposition to PCA, t-SNE is not parametric
- This means that we cannot learn a manifold representation from a dataset and apply it to another dataset
- Therefore, this cannot be used as a dimensionality reduction technique between training and test data
- There is, however, a parametric version available at:

Learning a Parametric Embedding by Preserving Local Structure

