

Missing data

- Missing data is very common
- · Main reasons behind missing data:
 - Person did not want to share his/her personal data
 - Data loss during data transfer
 - Lack of information, etc
- Important: some algorithms will ignore missing values, while others will not even run if missing data exists

3

4

Approaches for handling missing data
We will analyze a couple of ideas to handle missing data:

Removing rows with missing values
Removing rows where most part of the values are missing
Ignoring columns with too many missing values
Data imputation
Data imputation using machine learning

#2: Removing rows where most of the values are missing

- An often better approach is to remove instances in which most of the values are missing
- The threshold may change here, e.g., 70%, 75%, 80%, etc
- How do we pick this threshold up?
 - Feeling
 - We check how much data we will lose

#4: Data imputation

- If you don't have too many missing values, we can replace these values with a "generic" value
- This is not necessarily the best approach, as we are not sure whether this "generic" value is a common behavior in data

More on imputation Static value Replace missing values with a 0, +99999999 or -99999999 Do these values make sense? What is their impact when using machine learning? Statistic Replace missing values with the mean/median/mode of the remainder of the values Mean: what if the data has outliers? Predictive model We can infer the missing values based on the present values for the remainder of the columns

Summing up

- If you don't have many missing values, we may ignore them
- If a column has too many missing values, we may remove it
- Imputation is a viable option, but requires testing

Outlier

- An outlier is a value that is very "far" from the others
- It can be much smaller or bigger than the rest
- · Does not exhibit the same behavior as the other data
- It is hard to identify, as what is an outlier to a dataset might be different in other datasets

Reasons for Outliers

- · Mistakes in data acquisition
- · Data may be corrupted
- Or maybe, the outlier is true

Example	Gender	Age	Height
	М	20	159
Do you see any outliers in this table?	F	21	191
	М	24	173
	М	24	181
	F	28	156
	М	26	192
	F	19	280
	F	22	162
	М	26	190

Another example	Athlete	# of medals
What about in this table? Note that all of the data is correct, yet, Michael Phelps is still an outlier	Michael Phelps	28
	Larisa Latiynina	18
	Marit Bjorgen	15
	Nikolai Andrianov	15
	Ole Eimar Bjorndalen	13
	Boris Shakhlin	13
	Edoardo Mangiarotti	13

Agenda

- · We will use Tukey's method to identify outliers
- Tukey's method is based on quartiles, more specifically on the Inter-quartile range, or IQR
- Overview:
 - Apply Tukey's method in each variable individually
 - If an instance is flagged as an outlier n times, then it should be removed
 - How do we define n?

21

Inter-quartile Range

- The interval between the 1st and 3rd quartiles
- IQR = Q3 Q1
- If a value is greater than 1.5 * IQR + Q3 or smaller than Q1 1.5
 * IQR, then it is flagged as an outlier
- 1.5 is a "rule of thumb" proposed by Tukey
- 3 is a threshold for determining "far out" values
- Let's analyze this using boxplots

Activity

Let's use box-plots to analyze the variables available in the **OMMLBD_FAMILIAR.csv** file

Enron

- Back in the 2000s, Enron was one of the biggest companies in USA
- In 2002, it went bankrupt due to frauds
- Most of the data has been made public
- And today we will work with the data on salaries and emails

32

Outlier analysis

- Using the Enron dataset, try and identify individuals with weird (outlier) behavior
- The rationale here is that if someone has an outlier behavior, it is likely to be a fraudster
- Use any tools you wish, but we expect you to find at least 3 major outliers
- Data is available at: http://www.ppgia.pucpr.br/~jean.barddal/datascience/e nron.csv