

About

- Jean Paul Barddal
- Data Stream Mining
- jean.barddal@ppgia.pucpr.br
- www.jpbarddal.com.br
- Research topics: Machine learning (classification, regression, clustering, feature selection, recommender systems) for streaming data
- Applied ML: Financial systems, Education, Recommender systems for e-commerce, Log analysis, etc

ı

Warning

- We are in a Level I Global Classes program
- This means that:
 - Content (slides, activities, test, etc) will be in English
 - We will talk in Portuguese
 - The test will be in Portuguese, but you may answer them in either Portuguese or English

3

Warning

- · This is **not** a crash course on Data Science using Python
- You are highly expected to take your time to learn more about the tools we will use (numpy, pandas, scikit-learn, etc)
- We are interested in both your coding skills and also in your critical reasoning
- There is an underlying assumption that you know how to code

Agenda

- February 28th Lecture 1 Overview, grading, Basic Statistics
- March 6th Lecture 2 Univariate data analysis
- March 13th Lecture 3 Multivariate data analysis
- March 20nd Lecture 4 Correlations
- March 27th Lecture 5 Enhanced data visualization
- April 3th Lecture 6 Missing data & outliers
- April 10th Lecture 7 PCA and t-SNE
- April 17th Lecture 8 Test

5

Grading

- We have 8 meetings and you must be present in 75% of them, i.e., 6 lectures
- You grading will be based on a test to be done on April 19th (A >= 9, B >= 8, C >= 7, D otherwise)

Slides

- Slides will be made available on my website
- www.jpbarddal.com.br

Recordings

- · Lectures will **NOT** be recorded
- · There are no IFs and no BUTs on this

Polls

- You need to attend the poll that will be made in the beginning of each lecture
- Throughout the lecture, if you are requested to participate, and you do not, you may be assumed as absent

_

ENVIRONMENT SETUP

Google Colaborate

- Hereafter we will use Google Colaborate
- It will allow us to run Python code in the cloud
- Most part of the data analytics and machine learning tools are available there

Set up your account now:)

https://colab.research.google.com/

10

Anaconda

- If you're not too keen on working on the cloud, you should be able to use Jupyter and (preferably)
 Anaconda
- Anaconda allows you to keep different Python versions, each with different packages

https://www.anaconda.com/

PANDAS

12

Pandas

- Pandas is the most popular and good tool for handling data and data analysis
- · Let's focus on tabular data for now

Tabular data

Columns are called:

Attributes, Features

Variables, Fields, Characteristics

Lines are called: Objects Instances Samples Registers Cases

Age	Salary	Job Role	Married?
28	5600,34	Programmer	N
22	3215,50	Data Analyst	Υ
32	12000,00	Project Manager	N
27	4500,00	Lawyer	N
17	1400,00	Accounting Intern	N
	28 22 32 27 17	28 5600,34 22 3215,50 32 12000,00 27 4500,00 17 1400,00	28 5600,34 Programmer 22 3215,50 Data Analyst 32 12000,00 Project Manager 27 4500,00 Lawyer 17 1400,00 Accounting Intern

Types of variables

- Numeric
 - Interval
 - Money quantity, temperature in Celsius, Fahrenheit, etc
 - Ratio
 - The same as above, yet, 0 has a special meaning
 - Height, weight, temperature in Kelvin (note that these cannot be negative!)
- Categorical
 - Nominal
 - Ex.: Gender (M/F), Nationality, Car make
 - Ordinal
 - Ex.: Number of stars (hotel rating), movie ratings (poor, good, great)

Descriptive analytics

- Goal: summarize and describe a dataset
- Main goals:
 - Minimum and maximum values
 - Mean
 - Median
 - Mode
 - Variance
 - Standard deviation

16

Mean

• Sum of all values divided by the amount of values

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Mode

- The most repeated value in data
- What is the mode in each of the lists below?
- [1, 1, 2, 3, 4]
- [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- [1, 1, 1, 2, 2, 2, 3, 4, 5]
- [1,1,1,2,2,2,3,3,3,4,4,4,5,5,5]

18

Median

- Given a sorted dataset, the median is the value that is in its center position
- Example:

[32, 33, 24, 31, 44, 65, 32, 21, 32]

Sorting:

[21, 24, 31, 32, 32, 32, 33, 44, 65]

Median:

[21, 24, 31, 32, 32, 32, 33, 44, 65]

Median

- If the amount of values is even, the median is given by the average of the center positions
- Example:

Median =
$$(44+45)/2 = 44,5$$

20

Quartiles and Percentiles

 Quartiles divide the data in 4 parts. These are indicated by Q1, Q2 and Q3, such that Q2 is the median

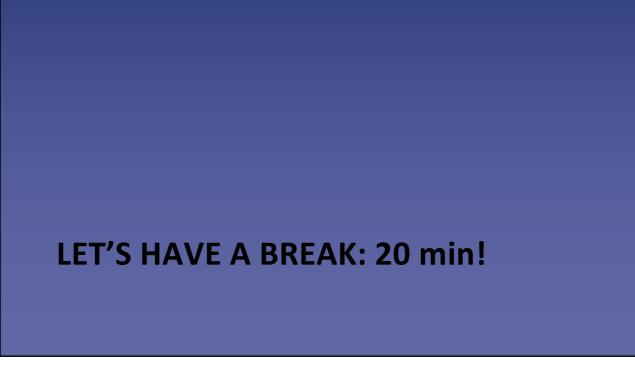
 The same rationale can be applied to percentiles, that divide the data in each 1%: P1, P2, P3, ... P99

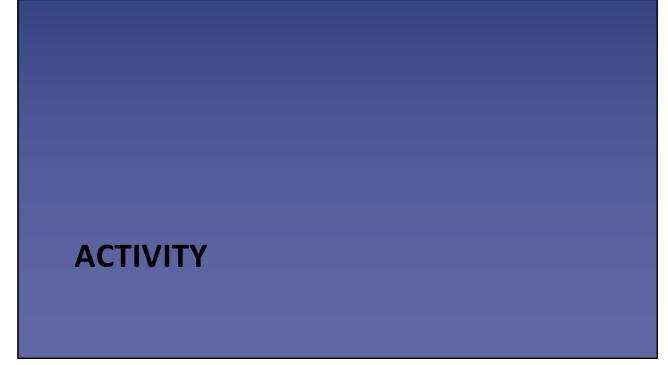
Variance

- Given a dataset, the variance tells us how distant each value is from the mean
- The smaller the variance, the closer all values are from the mean
- · Variance is given by:

$$Var(X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}$$

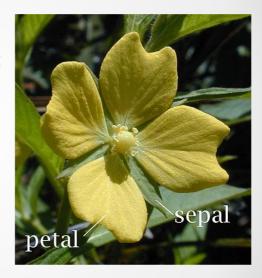
22


Standard deviation


- The standard deviation tells us the "error" in a dataset if a value is replaced by the mean
- The standard deviation is often showed next to the mean:

$$\bar{x} \pm \sigma$$

And it is the square root of the variance


$$\sigma = \sqrt{Var(X)}$$

Activity 1 - Using the Iris Dataset

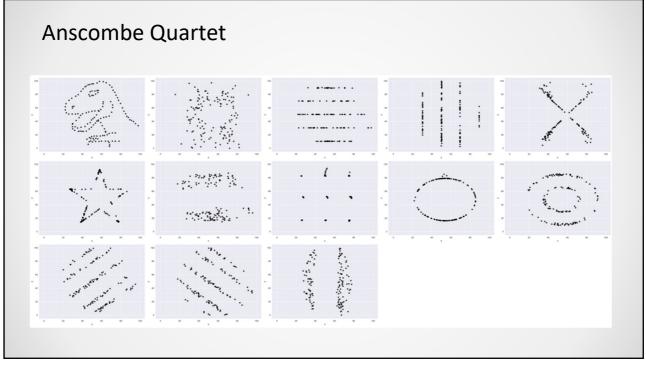
- Download the notebook
- Perform all the operations in it with the iris dataset
- Attributes
 - Petal Length
 - Petal Width
 - Sepal Length
 - Sepal Width

26

Activity 2

- Assemble in pairs!
- Each pair will receive a specific dataset
- You should follow the link below and replace X with your team's number.
- https://jpbarddal.github.io/assets/data/datascience/a ns/datasetX.csv

Activity 2 – let's continue


- Now, two teams should unite and discuss their findings
- · What are the main statistics you have computed?
- What do you think is going on with these datasets?

28

WHAT IS GOING ON?

Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing

30

