

1

About

- Jean Paul Barddal
- Data Stream Mining
- jean.barddal@ppgia.pucpr.br
- www.jpbarddal.com.br
- Research topics: Machine learning (classification, regression, clustering, feature selection, recommender systems) for streaming data
- Applied ML: Financial systems, Education, Recommender systems for e-commerce, Log analysis, etc

2

Warning

- We are in a Level I Global Classes program
- This means that:
- Content (slides, activities, test, etc) will be in English
- We will talk in Portuguese
- The test will be in Portuguese, but you may answer them in either Portuguese or English

3

Warning

- This is not a crash course on Data Science using Python
- You are highly expected to take your time to learn more about the tools we will use (numpy, pandas, scikit-learn, etc)
- We are interested in both your coding skills and also in your critical reasoning
- There is an underlying assumption that you know how to code

Agenda

- February 28th - Lecture 1 - Overview, grading, Basic Statistics
- March 6th - Lecture 2 - Univariate data analysis
- March 13th - Lecture 3 - Multivariate data analysis
- March 20nd - Lecture 4 - Correlations
- March 27th - Lecture 5 - Enhanced data visualization
- April 3th - Lecture 6 - Missing data \& outliers
- April 10th - Lecture 7 - PCA and t-SNE
- April 17th - Lecture 8 - Test

5

Grading

- We have 8 meetings and you must be present in 75% of them, i.e., 6 lectures
- You grading will be based on a test to be done on April 19th ($A>=9, B>=8, C>=7, D$ otherwise)

Slides

- Slides will be made available on my website
- www.jpbarddal.com.br

Recordings

- Lectures will NOT be recorded
. There are no IFs and no BUTs on this

Polls

. You need to attend the poll that will be made in the beginning of each lecture

- Throughout the lecture, if you are requested to participate, and you do not, you may be assumed as absent

ENVIRONMENT SETUP

Google Colaborate

- Hereafter we will use Google Colaborate
- It will allow us to run Python code in the cloud
- Most part of the data analytics and machine learning tools are available there

Set up your account now :)
https://colab.research.google.com/

Anaconda

- If you're not too keen on working on the cloud, you should be able to use Jupyter and (preferably) Anaconda
- Anaconda allows you to keep different Python versions, each with different packages
https://www.anaconda.com/

ANACONDA

PANDAS

Pandas

- Pandas is the most popular and good tool for handling data and data analysis
- Let's focus on tabular data for now

Tabular data	Columns are called: Attributes, Features Variables, Fields, Characteristics				
	Gender	Age	Salary	Job Role	Married?
	Male	28	5600,34	Programmer	N
	Male	22	3215,50	Data Analyst	Y
Objects Instances	Female	32	12000,00	Project Manager	N
Samples	Female	27	4500,00	Lawyer	N
Registers Cases	Male	17	1400,00	Accounting Intern	N

Types of variables

- Numeric
- Interval
- Money quantity, temperature in Celsius, Fahrenheit, etc
- Ratio
- The same as above, yet, 0 has a special meaning
- Height, weight, temperature in Kelvin (note that these cannot be negative!)
- Categorical
- Nominal
- Ex.: Gender (M/F), Nationality, Car make
- Ordinal
- Ex.: Number of stars (hotel rating), movie ratings (poor, good, great)

Descriptive analytics

- Goal: summarize and describe a dataset
- Main goals:
- Minimum and maximum values
- Mean
- Median
- Mode
- Variance
- Standard deviation

Mean

- Sum of all values divided by the amount of values

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Mode

- The most repeated value in data
- What is the mode in each of the lists below?
- [1, 1, 2, 3, 4]
- $[1,2,3,4,5,6,7,8,9,10]$
- [1, 1, 1, 2, 2, 2, 3, 4, 5]
- [1,1,1,2,2,2,3,3,3,4,4,4,5,5,5]

Median

- Given a sorted dataset, the median is the value that is in its center position
- Example:
[32, 33, 24, 31, 44, 65, 32, 21, 32]
Sorting:
[21, 24, 31, 32, 32, 32, 33, 44, 65]

Median:
[21, 24, 31, 32, 32, 32, 33, 44, 65]

Median

- If the amount of values is even, the median is given by the average of the center positions
- Example:

$$
[18,19,19,22,44,45,46,46,47,48]
$$

Median $=(\mathbf{4 4 + 4 5}) / \mathbf{2}=\mathbf{4 4 , 5}$

Quartiles and Percentiles

- Quartiles divide the data in 4 parts. These are indicated by Q1, Q2 and Q3, such that Q2 is the median

$$
\begin{aligned}
& \text { Q1 }(\text { pos. 2,5) }=19 \quad \text { Q3 }(\text { pos. } 7,5)=46,5 \\
& {[18, \underline{19,19}, 22, \underline{44,45}, 46, \underline{46,47}, 48]} \\
& \text { Q2 }(\text { pos. } 5,5)=44,5
\end{aligned}
$$

- The same rationale can be applied to percentiles, that divide the data in each 1\%: P1, P2, P3, ... P99

Variance

- Given a dataset, the variance tells us how distant each value is from the mean
. The smaller the variance, the closer all values are from the mean
- Variance is given by:

$$
\operatorname{Var}(X)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Standard deviation

- The standard deviation tells us the "error" in a dataset if a value is replaced by the mean
- The standard deviation is often showed next to the mean:

$$
\bar{x} \pm \sigma
$$

- And it is the square root of the variance

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

LET'S HAVE A BREAK: 20 min!

ACTIVITY

Activity 1 - Using the Iris Dataset

- Download the notebook
- Perform all the operations in it with the iris dataset
- Attributes
- Petal Length
- Petal Width
- Sepal Length
- Sepal Width

Activity 2

- Assemble in pairs!
- Each pair will receive a specific dataset
- You should follow the link below and replace X with your team's number.
- https://jpbarddal.github.io/assets/data/datascience/a ns/datasetX.csv

Activity 2 - let's continue

- Now, two teams should unite and discuss their findings
- What are the main statistics you have computed?
- What do you think is going on with these datasets?

WHAT IS GOING ON?

Anscombe Quartet

Same Stats, Different Graphs:

Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing

Anscombe Quartet

